Abstract:
A semiconductor device fabricated on a silicon-on-insulator substrate and having an active well scheme as well as methods, including a non-self-aligned and self-aligned, of fabricating such a device are disclosed herein. The semiconductor device includes field effect transistor 124 comprising at least body region 127 and diffusion regions 132; buried interconnect plane 122 optionally self-aligned to diffusion regions 132 and in contact with body region 127; isolation oxide region 118 between diffusion regions 132 and buried interconnect plane 122; and buried oxide layer 104 present beneath buried interconnect plane 122.
Abstract:
An SOI pass-gate disturb solution for an N-type MOSFET wherein a resistor is connected between the gate and the body of the FET to eliminate the disturb condition. The FET is fabricated in a substrate having a source, a drain and a gate, wherein the body of the field effect transistor is electrically floating and the transistor is substantially electrically isolated from the substrate. A high resistance path is provided coupling the electrically floating body of the FET to the gate, such that the body discharges to a low state before significant thermal charging can occur when the gate is low, and thus prevents the accumulation of a charge on the body when the transistor is off. The resistance of the high resistance path is preferably approximately 10.sup.10 Ohms-um divided by the width of the pass-gate.
Abstract:
A device design for an FET in SOI CMOS which is designed for enhanced avalanche multiplication of current through the device when the FET is on, and to remove the body charge when the FET is off. The FET has an electrically floating body and is substantially electrically isolated from the substrate. The present invention provides a high resistance path coupling the floating body of the FET to the source of the FET, such that the resistor enables the device to act as a floating body for active switching purposes and as a grounded body in a standby mode to reduce leakage current. The high resistance path has a resistance of at least 1 M-ohm, and comprises a polysilicon resistor which is fabricated by using a split polysilicon process in which a buried contact mask opens a hole in a first polysilicon layer to allow a second polysilicon layer to contact the substrate.
Abstract:
Test circuits and methods for accurately flagging out-of-spec resistance in a current carrying structure of an integrated circuit employ a plurality of monitor structures connected in parallel and a test means for monitoring the monitor structures. Each monitor structure includes a test structure and an associated threshold sensitive device. Each test structure is predesigned relative to the current carrying structure of the integrated circuit such that an out-of-spec resistance in the test structure signals a possible out-of-spec resistance in the current carrying structure. The threshold sensitive device of each monitor structure outputs a fail signal when resistance of the associated test structure is above a predefined level. The fail signal is representative of an out-of-spec resistance in the associated test structure and flags possible out-of-spec resistance in the current carrying structure. The test means simultaneously monitors the plurality of monitor structures for a fail signal. An automated test device is also disclosed for providing a binary count representative of a total number of out-of-spec test structures.
Abstract:
A silicon on insulation device having halo extensions of source and drain regions and an additional implant for inducing silicon lattice damage is able to withstand high operating voltages. A field lowering Lightly Doped Drain implant and removal of standard damaging source implants decreases avalanche currents and significantly increases drain-to-source breakdown voltage.
Abstract:
A monitor for detecting pass gate leakage in a silicon on insulator device and a method for using the same is described herein. A pulse generator supplies a signal to a set of buffers connected in parallel, which pass on a signal to the source side of a series of NFETs. The plurality of NFETs are ordered by increasing channel widths. The NFETs have grounded gates, and therefore will not pass current due to field effects. Each NFET is connected to a latch, and the latches are originally set to the same state. When the signal supplied to the NFET drops from high to low, pass gate leakage will occur through the channel of each NFET. If pass gate leakage through any given NFET is sufficient, the latch will change states. The latch output signal is sent to a shift register, which can be made to output information. By incorporating the monitor on the chip, pass gate leakage tolerances and specifications can be established in-line during manufacture.
Abstract:
A method for forming a semiconductor device. A substrate is provided. A first electrically insulating layer is formed on the substrate. A second electrically insulating layer is formed on the first electrically insulating layer. Openings are formed through the second electrically insulating layer down to the level of the first electrically insulating layer. Spacers are formed on opposing sidewalls of the openings. The spacers on one of the opposing side walls of the openings are removed, thereby exposing portions of the first electrically insulating layer. Exposed portions of the first electrically insulating layer in the openings are removed, thereby exposing portions of the substrate. The spacers on another of the opposing sidewalls of the openings are removed, thereby exposing portions of the first electrically insulating layer. A third electrically insulating layer is formed in the openings over the exposed portions of the first electrically insulating layer and the exposed portions of the substrate.
Abstract:
A resistance capacitance (RC) coupled low-voltage triggering silicon-controlled rectifier (LVTSCR) suppression circuit is presented for protecting an integrated circuit from electrostatic discharges or other potentially damaging voltage transients occurring at an input and/or output node of the integrated circuit or integrated circuit chip. The suppression circuit includes a discharge circuit and a trigger circuit. The discharge circuit is electrically coupled to the input and/or output node for dissipating the electrostatic discharge, while the trigger circuit is electrically connected to the input and/or output node and to the discharge circuit. The trigger circuit provides direct low-voltage turn-on of the discharge circuit as the electrostatic discharge builds at the input and/or output node of the integrated circuit. The trigger circuit includes a transistor having a control gate, and an RC circuit connected to the control gate and to the input and/or output node such that the control gate is electrically coupled to the input and/or output node across a capacitance and to ground across a resistance.
Abstract:
A decoding process and a decoding circuit arrangement for a redundant semiconductor memory is described, wherein the advantages of parallelly selecting non-defective word lines and redundant word lines at a low level are utilized for the writing as well as for the reading current in such a manner that high speed reading and writing is not affected. This is achieved in that the decoder for the redundant word lines consists of a comparator circuit and fuse-controlled switches, and that the input addresses are applied to a conventional address decoder as well as to the comparator circuit. The output of the comparator circuit is directly connected to the input of a first driver circuit for the redundant word line, and furthermore to an OR circuit which is also controlled by a read/write control circuit, and which is connected to the decoder and to a clamp circuit that is directly connected to the input of a second word line driver circuit, and continuously maintains the potential following a deselect signal applied on that level, which requires a minimum of power.
Abstract:
A structure and process for making a non-aligned MOSFET structure for ESD protection using resistor wells as the diffusions and adjustable capacitors. The present invention compensates the shallow extension region without the need for additional masks. The source/drain doping is less than that of a normal MOSFET but extends deeper into the silicon since the present invention uses a resistor well as the source/drain. The deeper emitter/collector increases the second trigger current of the NFET when used as an ESD protection device.