Abstract:
A method for fabricating a capacitor electrode on a semiconductor substrate includes the steps of: forming a conducting layer over the semiconductor substrate; forming a photoresist layer over the conducting layer; pattering the photoresist layer through an interfering exposure step; and pattering the conducting layer using the patterned photoresist layer as a mask, thereby forming a capacitor electrode.
Abstract:
A method of fabricating a rugged capacitor structure of high density Dynamic Random Access Memory (DRAM) cells is disclosed. First, MOSFETs, wordlines and bitlines are formed on a semiconductor silicon substrate. Next, a dielectric layer and a doped polysilicon layer are sequentially deposited over the entire silicon substrate. The dielectric layer and doped polysilicon layer are then partially etched to open source contact windows. Then, a polysilicon layer is deposited overlaying the doped polysilicon layer and filling into the source contact windows. Next, the polysilicon layer and doped polysilicon layers are partially etched to define bottom electrodes of the capacitors. Next, tilt angle implantation is performed to implant impurities into top surface and four sidewalls of the polysilicon layer and doped polysilicon layer. Next, a rugged polysilicon layer is deposited overlaying the polysilicon, doped polysilicon and third dielectric layers. Next, the polysilicon layer is anisotropically etched by using the rugged polysilicon layer as an etching mask to transfer rugged surface profile from the rugged polysilicon layer to the polysilicon layer. Finally, an interelectrode dielectric layer and a third polysilicon layer as top electrodes of the capacitors are sequentially formed to complete the rugged capacitor for high density DRAM applications.
Abstract:
The electric circuit of a Liquid Crystal Display normally includes a common electrode comprising a material such as indium-tin-oxide that has high resistivity and hence high series resistance. Said series resistance is significantly reduced by the design taught in the present invention wherein an electrically conductive black matrix is located so as to be in contact with the common electrode. Additionally, said design reduces the level of light reflected back in the direction of viewing, thereby improving the contrast level of the display.
Abstract:
The present disclosure relates to a method for making a touch panel. The method includes following steps. A substrate is provided, wherein the substrate has a surface and defines two areas: a touch-view area and a trace area; applying an adhesive layer on the surface of the substrate. A carbon nanotube film is placed on a surface of the adhesive layer. The adhesive layer is solidified. An electrode and a conductive trace are formed on a surface of the carbon nanotube film so that part of the carbon nanotube film on the trace area is exposed from space between adjacent conductive lines of the conductive trace to form an exposed carbon nanotube film. The exposed carbon nanotube film is removed.
Abstract:
The present disclosure relates to a method for making touch panel. A substrate having a surface is provided. The substrate defines two areas: a touch-view area and a trace area. An adhesive layer is formed on the surface of the substrate. The adhesive layer on the trace area is solidified. A carbon nanotube layer is formed on the adhesive layer. The adhesive layer on the touch-view area is solidified. The carbon nanotube layer on the trace area is removed. At least one electrode and a conductive trace is formed.
Abstract:
An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer.
Abstract:
The present disclosure relates to a method for making pattern conductive element. The method includes steps. A substrate having a surface is provide. An adhesive layer is formed on the surface of the substrate. Part of the adhesive layer is solidified to form a solidified adhesive layer and a non-solidified adhesive layer. A carbon nanotube layer is applied on the adhesive layer. The non-solidified adhesive layer is solidified so that the carbon nanotube layer on the non-solidified adhesive layer forms a fixed carbon nanotube layer and the carbon nanotube layer on the solidified adhesive layer forms a non-fixed carbon nanotube layer. The non-fixed carbon nanotube layer is removed and the fixed carbon nanotube layer is remained to form a pattern carbon nanotube layer.
Abstract:
An electronic paper display device includes an electronic paper display panel, and a functional layer. The electronic paper display panel includes a common electrode layer and a display surface. The functional layer is located on the display surface and includes a carbon nanotube touching functional layer. A distance between the common electrode layer and the carbon nanotube touching functional layer is above 100 microns and equal to or less than 2 millimeters.
Abstract:
A method for making a patterned conductive element includes following steps. A substrate is provided. A patterned adhesive layer is applied on a surface of the substrate. A carbon nanotube layer is placed on a surface of the patterned adhesive layer. The patterned adhesive layer is solidified to obtain a fixed part of the carbon nanotube layer and a non-fixed part of carbon nanotube layer. The non-fixed part of carbon nanotube layer is removed.
Abstract:
A touch panel includes a first electrode plate and a second electrode plate connected to the first electrode plated. The first electrode plate includes a first substrate, and a first conductive layer disposed on the first substrate. The second electrode includes a second substrate, and a second conductive layer disposed on the second substrate. The first or the second conductive layer includes at least one carbon nanotube composite layer.