摘要:
A method and apparatus for optimization of multiprocessor synchronization and allocation of system management memory space is herein described. When a system management interrupt (SMI) is received, a first processor checks the state of a second processor, which may be done by checking a storage medium storing values representative of the second processor's state. The first processor handles the SMI or waits for the second processor dependent on the state of the second processor. Furthermore, system management memory is allocated where a first system management memory space assigned to a first processor overlaps a second system management memory space assigned to a second processor, leaving first and second non-overlapping region.
摘要:
A processor's performance state may be adjusted based on processor temperature. On transitions to a lower performance state due to the processor getting hotter, the processor's frequency is reduced prior to reducing the processor voltage. Thus, the processor's performance, as seen by the operating system, is reduced immediately. Conversely, on transitions to a higher performance state, due to the processor cooling down, the processor's frequency is not increased until the voltage is changed to a higher level. An interrupt event may be generated anytime the processor's phase locked loop relocks at a new frequency level. Thus, when the interrupt fires, the operating system can read the processor's performance state. As a result, interrupts are not generated that would cause processor performance to lag the interrupt event.
摘要:
The utilization of a central processing unit during a sampling time interval is determined by measuring a time quantum within the sampling time interval during which a central processing unit clock signal is active within a processor core of the central processing unit. The total number of cycles of the central processing unit clock signal that are applied to the processor core and the period of the central processing unit clock signal are used to determine the time quantum. The utilization may then be expressed in terms of a ratio of the time quantum to the total time interval.
摘要:
A method and apparatus are provided for obtaining throttle settings of a system, such as a chipset. A first bandwidth may be applied to a first area (or interface) of the system and a temperature of the first area may be sensed using a thermal sensor. The bandwidth passing through this first area may be increased or decreased based on the sensed temperature to obtain an ideal or optimized setting.
摘要:
In one embodiment, a system includes: a plurality of compute nodes to couple in a chassis; a first shared power supply to provide a baseline power level to the plurality of compute nodes; and an auxiliary power source to provide power to one or more of the plurality of compute nodes during operation at a higher power level than the baseline power level. Other embodiments are described and claimed.
摘要:
A system on a chip may include a central processing unit and a graphics processing unit. Based on a user specified target frame rate, it is determined whether a previous processor frame duration for either both of said central and graphics processing unit is too long. It so, at least one of the processors' idle times is decreased. In some embodiments, the frame rate is accessed only if the system on a chip is power limited. In some embodiments, the start of work on the graphics processing unit may be locked to a benchmark such as a v-sync signal or a completion of work on the graphics processor.
摘要:
In at least one embodiment described herein, an apparatus is provided that can include means for communicating a latency tolerance value for a device connected to a platform from a software latency register if a software latency tolerance register mode is active. The apparatus may also include means for communicating the latency tolerance value from a hardware latency register if a host controller is active. The latency tolerance value can be sent to a power management controller. More specific examples can include means for communicating a latency tolerance value from the software latency register if the software latency tolerance register mode is not active and the host controller is not active. The apparatus can also include means for mapping a resource space in the software latency register for the device using a BIOS/platform driver. The mapping can be achieved using an advanced configuration and power interface device description.
摘要:
Memory allocation for fast platform hibernation and resumption of computing systems. An embodiment of an apparatus includes logic at least partially implemented in hardware, the logic to: dynamically allocate at least a first portion of a nonvolatile memory; in response to a command to enter the apparatus into a standby state, the logic to store at least a portion of a context data from a volatile memory to the dynamically allocated first portion of the nonvolatile memory; and in response to a resumption of operation of the apparatus, the logic to copy at least the portion of the context data from the first portion of the nonvolatile memory to the volatile memory, and to reclaim the first portion of the nonvolatile memory for dynamic allocation.
摘要:
Particular embodiments described herein can offer a method that includes receiving storage operation information that is to indicate one or more storage drive operations, receiving storage independent power information, determining, by a processor, a performance profile based at least in part on the storage operation information and the storage independent power information, and causing a setting of at least one power management directive that is to correspond with the performance profile.
摘要:
In some embodiments, an electronic apparatus comprises at least one processor, a plurality of components, and a policy engine comprising logic to receive latency data from one or more components in the electronic device, compute a minimum latency tolerance value from the latency data, and determine a power management policy from the minimum latency tolerance value.