Abstract:
A method (100) and system for actively controlling the temperature of engine (10) exhaust gas entering an aftertreatment device and thereby controlling undesirable emissions. Through control of the turbine blade position of a variable geometry turbocharger (16), the temperature of the exhaust gas entering the aftertreatment device is maintained within the operating temperature window for the device, and at the same time, achieves the fuel economy benefits associated with turbocharging.
Abstract:
A torque control system for a lean burn engine utilizing a supplemental torque apparatus that is operable during the engine mode transition from a lean air/fuel ratio to a rich air/fuel ratio. The supplemental torque apparatus 34, STA, operates to maintain the basic engine torque equation T.sub.e +T.sub.sta =T.sub.d, such that the device or a electrically connected battery 38 absorbs extra engine torque during a predetermined time period and generates engine torque at times other than the predetermined time period. During the predetermined time period, a lean NOx Trap 26 in the exhaust system is purged.
Abstract:
A vapor recovery control system for a direct injection spark ignition engine is used to purge vapors in both a homogeneous air/fuel and stratified air/fuel mode. When purging vapors in a stratified mode, a portion of the cylinders receive purge vapors and operate in a homogeneous mode while the rest of the cylinders continue to operate in a stratified mode.
Abstract:
Aspects of the disclosure relate to methods and apparatus of time-domain multiplexing (TDM) for reference signals (RS) and data using a modified cyclic prefix. A reference signal (RS) and data are multiplexed either in a single symbol or in two time consecutive symbols that respectively including the RS and data. The cyclic prefix (CP) is added to the single symbol using a portion of the RS or to a first symbol of the two time consecutive symbols using a portion of the RS. The CP may be copied from the RS or the end of the symbol, but not the data, in a manner that affords a virtual Time Division Multiplexing (TDM) of the RS and data before discrete Fourier transform (DFT) spreading is performed in a transceiver to provide lower peak to average power ratios and no Inter-symbol interference.
Abstract:
A method for interference cancellation in a device that receives transmissions from multiple sources is disclosed. The method includes receiving multiple slots, each including a pilot segment and a traffic segment. A first one of the slots includes information indicating an activity level of a traffic segment of the first one of the slots. The method also includes calculating a value associated with interference among the plurality of slots, utilizing the information indicating the activity level to account for an amount of interference attributable to the first one of the slots. Furthermore, channel conditions are estimated for a second one of the slots using the value associated with the amount of interference. The method also includes processing the second one of the slots according to the estimated channel conditions.
Abstract:
Example methods of modeling a nonlinear dynamical system such as a vehicle engine include providing a model using linear programming support vector regression (LP-SVR) having an asymmetric wavelet kernel, such as derived from a raised-cosine wavelet function. The model may be trained to determine parallel model parameters while in a series-parallel configuration, and operated in the parallel configuration allowing improved and more flexible model performance. An improved engine control unit may use an LP-SVR with an asymmetric wavelet kernel.
Abstract:
This invention provides REL inhibitors which interfere with the DNA binding capacity of a REL protein. Additionally this invention provides methods of treating, abrogating, or preventing diseases which respond with a positive clinical score to a REL inhibitor. Methods of identifying REL inhibitor based on a REL protein three dimensional model are described.
Abstract:
The method and apparatus as described are directed toward techniques and mechanisms to improve efficient wireless network implementation, including obtaining one specification including a center frequency definition, determining, based on the specification, a center frequency of at least one carrier used to operate on the wireless communication system, determining an amount of dithering to add to the center frequency, and setting the center frequency to be multiples of sub-carrier spacing by adding the dithering.
Abstract:
A power amplifier includes a plurality of amplification paths in which at least one amplification path is selectively enabled and disabled, wherein each amplification path includes an output impedance modification element and an output phase shift element that is operable independently from the output impedance modification element, and wherein the output impedance modification element in each amplification path provides selective impedance for each amplification path.
Abstract:
Techniques for mitigating interference in a wireless network are described. In an aspect, interference on overhead channels may be mitigated by (i) sending the overhead channels from different base stations in non-overlapping time intervals and (ii) having each interfering base station reduce its transmit power during time intervals in which the overhead channels are sent by neighbor base stations. In one design, a first base station may send an overhead channel in a first time interval, and a second base station may send the overhead channel in a second time interval that is non-overlapping with the first time interval. The base stations may have different frame timing, which may be offset by an integer number of subframes and/or an integer number of symbol periods. Alternatively, the base stations may have the same frame timing, and the first and second time intervals may cover non-overlapping symbol periods with different indices.