摘要:
A method for manufacturing an edge emitting semiconductor laser chip, which has a carrier substrate, an interlayer arranged between the carrier substrate and a component structure of the edge emitting semiconductor laser chip. The interlayer is adapted to provide adhesion between the carrier substrate and the component structure. The component structure has an active zone provided for generating radiation.
摘要:
Presented is a method for the production of a plurality of optoelectronic semiconductor chips each having a plurality of structural elements with at least one semiconductor layer. The method involves providing a chip composite base that includes a substrate and a growth surface. A mask material layer is formed on the growth surface. The mask material layer includes a multiplicity of windows having an average extent of less than or equal to 1 μm. A mask material is chosen so that a semiconductor material of the semiconductor layer that is to be grown essentially cannot grow on the mask material or can grow in a substantially worse manner in comparison with the growth surface. Subsequently, semiconductor layers are deposited essentially simultaneously onto regions of the growth surface that lie within the windows. The chip composite base with applied material is singulated to form semiconductor chips.
摘要:
A method for laterally dividing a semiconductor wafer (1) comprises the method steps of: providing a growth substrate (2); epitaxially growing a semiconductor layer sequence (3), which comprises a functional semiconductor layer (5), onto the growth substrate (2); applying a mask layer (10) to partial regions of the semiconductor layer sequence (3) in order to produce masked regions (11) and unmasked regions (12); implanting ions through the unmasked regions (12) in order to produce implantation regions (13) in the semiconductor wafer (1); and dividing the semiconductor wafer (1) along the implantation regions (13), wherein the growth substrate (2) or at least one part of the growth substrate (2) is separated from the semiconductor wafer.
摘要:
In a process for producing a semiconductor chip, a functional semiconductor layer sequence (2) is grown epitaxially on a growth substrate (1). Then, a separating zone (4), which lies parallel to a main surface (8) of the growth substrate (1), is formed in the growth substrate (1) by ion implantation, the ion implantation taking place through the functional semiconductor layer sequence (2). Then, a handle substrate (6) is applied to the functional semiconductor layer sequence (2), and a part of the growth substrate (1) which is remote from the handle substrate (6) as seen from the separating zone (4), is detached along the separating zone (4).
摘要:
The present invention relates to a method for the production of semiconductor components. This method comprises the steps of applying masking layers and components on epitaxial semiconductor substrates within the epitaxy reactor without removal of the substrate from the reactor. The masking layers may be HF soluble such that a gas etchant may be introduced within the reactor so as to etch a select number and portion of masking layers. This method may be used for production of lateral integrated components on a substrate wherein the components may be of the same or different type. Such types include electronic and optoelectronic components. Numerous masking layers may be applied, each defining particular windows intended to receive each of the various components. In the reactor, the masks may be selectively removed, then the components grown in the newly exposed windows.
摘要:
A semiconductor chip has a substrate that is in the form of a parallelepiped whose side surfaces are shaped as tilted parallelograms. Such a semiconductor chip has a high output efficiency and a homogeneous thermal load due to having at least two side surfaces that are provided with an acute angle and are in the form of parallelograms.
摘要:
An optoelectronic semiconductor chip comprises the following sequence of regions in a growth direction (c) of the semiconductor chip (20): a p doped barrier layer (1) for an active region (2), the active region (2), which is suitable for generating electromagnetic radiation, the active region being based on a hexagonal compound semiconductor, and an n doped barrier layer (3) for the active region (2). Also disclosed are a component comprising such a semiconductor chip, and to a method for producing such a semiconductor chip.
摘要:
An optoelectronic semiconductor component, comprising a carrier substrate, and an interlayer that mediates adhesion between the carrier substrate and a component structure. The component structure comprises an active layer provided for generating radiation, and a useful layer arranged between the interlayer and the active layer. The useful layer has a separating area remote from the carrier substrate.
摘要:
A radiation-emitting semiconductor body with a carrier substrate. A structured connection is produced between a semiconductor layer sequence (2) and a carrier substrate wafer (1). The semiconductor layer sequence is subdivided into a plurality of semiconductor layer stacks (200) by means of cuts (6) through the semiconductor layer sequence, and the carrier substrate wafer (1) is subdivided into a plurality of carrier substrates (100) by means of cuts (7) through the carrier substrate wafer (1). In the method, the structured connection is formed in such a way that at least one semiconductor layer stack (200) is connected to one and only one associated carrier substrate (100). In addition, at least one cut (7) through the carrier substrate wafer is not extended by any of the cuts (6) through the semiconductor layer sequence such that a straight cut results through the carrier substrate wafer and the semiconductor layer sequence.
摘要:
Optoelectronic components with a semiconductor chip, which is suitable for emitting primary electromagnetic radiation, a basic package body, which has a recess for receiving the semiconductor chip and electrical leads for the external electrical connection of the semiconductor chip and a chip encapsulating eclement, which encloses the semiconductor chip in the recess. The basic package body is at least partly optically transmissive at least for part of the primary radiation and an optical axis of the semiconductor chip runs through the basic package body The basic package body comprises a luminescence conversion material, which is suitable for converting at least part of the primary radiation into secondary radiation with wavelengths that are at least partly changed in comparison with the primary radiation.