摘要:
The present invention provides a method of fabricating an improved gate of a nitride read only memory (NROM) in a semiconductor wafer. A bottom oxide and a silicon nitride layer are first formed on the surface of a silicon substrate in the semiconductor wafer, respectively, followed by injecting a tantalum penta ethoxide (Ta(OC2H5)5), under the condition of 300 mTorr and 200-650° C., to form a tantalum pentaoxide (Ta2O5) layer as a top oxide layer. The top oxide layer, silicon nitride layer and the bottom oxide layer compose an oxide-nitride-oxide (ONO) dielectric structure. Finally, a gate conductor layer is formed on the surface of the ONO structure to complete the fabrication of the NROM of the present invention. The tantalum pentaoxide has a high dielectric constant and is used to reduce the control gate voltage and thermal budget so as to increase the coupling ratio and yield of the semiconductor wafer.
摘要翻译:本发明提供一种在半导体晶片中制造氮化物只读存储器(NROM)的改进栅极的方法。 首先在半导体晶片中的硅衬底的表面上分别形成底部氧化物和氮化硅层,然后在300mTorr和200-650的条件下注入五乙氧基钽(Ta(OC 2 H 5)5) 以形成作为顶部氧化物层的五氧化钽(Ta 2 O 5)层。 顶部氧化物层,氮化硅层和底部氧化物层构成氧化物 - 氧化物 - 氧化物(ONO)电介质结构。 最后,在ONO结构的表面上形成栅极导体层,以完成本发明的NROM的制造。 五氧化二钽具有高介电常数,用于降低控制栅极电压和热预算,以增加半导体晶片的耦合比和产率。
摘要:
The present invention provides a method for monitoring for a second gate over etch in a flash memory device. The method includes providing at least one select transistor stack structure in the core area of the substrate and at least one monitor structure in the monitor area of the substrate; determining a thickness of a select gate layer of the at least one monitor structure; and determining if a second gate over etch occurred upon the thickness of the select gate layer of the at least one monitor structure. The select gate layer of the monitor structure is the same select gate layer of the select transistor stack structure. The select gate thickness of the select transistor stack structure may be determined by measuring the thickness at the monitor structure. This measurement is possible at the monitor area because the monitor structures are placed far enough apart to support measuring instruments. With the method in accordance with the present invention, a second gate over etch and its extent can be monitored without destroying the device. The method requires less time than conventional monitoring methods and is also less costly.
摘要:
A manufacturing method for a semiconductor device is provided, wherein a silicon germanium (Si1-xGex; SiGe) layer and a strained silicon layer are sequentially formed on a semiconductor substrate. A gate oxide layer and a gate structure are further formed on the strained silicon layer. The gate structure and the strained silicon layer are heavily doped with n-type dopants to form a compressed gate and source/drain regions, respectively. A cap layer is further formed over the semiconductor substrate, followed by conducting an annealing process. The cap layer is subsequently removed.
摘要:
A memory device is formed on a silicon substrate. A blocking layer is thereafter formed to cover a stacked gate of the memory device. A gettering layer is formed on the blocking layer followed by planarizing of the gettering layer to a predetermined thickness. A first barrier layer is then formed on the gettering layer. A contact hole is formed to penetrate through the first barrier layer, the gettering layer and the blocking layer down to the surface of the memory device. Following that, a second barrier layer is created to cover the first barrier layer and the contact hole. Finally, portions of the second barrier layer are etched back to make a barrier spacer on the side wall of the contact hole. Therein, the first barrier layer and the barrier spacer prevent mobile atoms from vertically diffusing and laterally diffusing, respectively, into the memory device.
摘要:
The present invention provides a memory structure, comprising: a substrate; a gate oxide layer disposed on a portion of the substrate; a gate structure disposed on the gate oxide layer; a buried bit line disposed in the substrate along both sides of the gate structures; a raised line disposed on the burled bit line; an isolating spacer disposed on both sidewalls of the gate structure and a word line disposed over the substrate in a direction perpendicular to the buried bit line; and an insulation layer disposed on a top of the raised line to electrically isolate the raised line and the word line.
摘要:
This invention relates to a method for manufacturing a flash memory, more particularly, to the method for manufacturing the contact in a flash memory with buried conductive line. The method uses an ion implantation process to form buried conductive lines under isolation regions such as shallow trench isolations. Then a dielectric layer is formed on the buried conductive line and the contact, whose top is wider than the bottom, is formed in the dielectric layer. At last, a polysilicon layer is formed in the contact to connect with different devices, which are in the different layers. The buried conductive lines connect neighboring active regions and replace conventional contacts and lead lines connecting the active regions. The bottom of the contact and the buried conductive line are connected with each other.
摘要:
In fabricating nitride read only memory, a zirconium oxide layer has high dielectric constant and a zirconium oxide layer is replaced conventional tunnel oxide layer. Zirconium oxide layer can increase coupling ratio of gate dielectric layer and reliability for nitride read only memory type flash memory is improved. This invention, a substrate is provided and a zirconium oxide layer is formed on substrate by reactive magnetron sputtering and a silicon nitride layer is sandwiched between a zirconium oxide layer and a silicon oxide layer. Then, an ONO layer (oxide-nitride-oxide layer) is formed. The method is using zirconium oxide as gate dielectric can reduce leakage current, increase drain current, improve subthreshold characteristics, and electron and hole mobilities.
摘要:
A method for forming a semiconductor device that includes defining a substrate to include a peripheral section and a core section, masking the peripheral section of the substrate, growing a first dielectric layer over the core section of the substrate, depositing a first polysilicon layer over the first dielectric layer for forming at least one gate structure, growing a first oxide layer over the first polysilicon layer, depositing a nitride layer over the first oxide layer, implanting oxygen ions into the nitride layer, unmasking the peripheral section of the substrate, and growing a second oxide layer over the nitride layer, wherein the growth rate of the second oxide layer is increased due to the implantation of oxygen ions in the nitride layer.
摘要:
The present invention shows a method of fabricating a MOS transistor on the substrate of a semiconductor wafer and of preventing the gate depletion effects occurring in the MOS transistor. The method involves first forming a silicon oxide layer on the substrate. Then an amorphous silicon layer is formed on the silicon oxide layer followed by forming a silicon germanium (Si1-xGex, x=0.05˜1.0) layer on the amorphous silicon layer. Thereafter, an etching process removes portions of the silicon germanium layer and the amorphous silicon layer so as to form gates of the MOS transistor on the substrate. Finally, a spacer is formed around each gate and a source and a drain of each MOS transistor is formed in the substrate.
摘要:
A method for fabricating a nitride read only device is disclosed. A trench is formed in a semiconductor substrate. An ion implantation is performed to form a first source/drain region and a second source/drain region within the substrate in the upper corners of the trench, and to form a common source/drain region within the substrate at a bottom of the trench. Next, a trapping layer is formed over the substrate and the trench and a gate conducting layer is formed over the substrate and filling the trench.