摘要:
A molten salt bath includes at least one kind selected from the group consisting of chlorine, bromine, and iodine, zinc, at least two kinds of alkali metals; and fluorine. Here, the molten salt bath may include oxygen. Furthermore, the molten salt bath may include at least one kind selected from the group consisting of tungsten, chromium, molybdenum, tantalum, titanium, zirconium, vanadium, hafnium, and niobium. Additionally provided are a deposit obtained using the aforementioned molten salt bath, a method of manufacturing a metal product using the aforementioned molten salt bath, and a metal product.
摘要:
Provided is a method for manufacturing a molten salt battery. The method includes a housing step (S100) for housing a positive electrode, a negative electrode and a separator in a battery container; an injecting step (S110) for injecting the molten salt into the battery container while heating the battery container; a closing step (S120) for closing the battery container with a closing lid; a heating and drying step (S130) for heating the battery container in a vacuum state with a check valve open; and a sealing step (S150) for closing the check valve. In summary, the positive electrode, negative electrode, separator and molten salt are heated and dried in a vacuum state.
摘要:
An electrode for a molten salt battery includes a current collector connectable to an electrode terminal of the molten salt battery and an active material. The current collector has an internal space in which small spaces are mutually coupled. The internal space of the current collector is filled with the active material.
摘要:
A separator (3) of a molten salt battery is impregnated with a molten salt that serves as the electrolyte. The molten salt contains, as cations, at least one kind of ions selected from among quaternary ammonium ions, imidazolium ions, imidazolinium ions, pyridinium ions, pyrrolidinium ions, piperidinium ions, morpholinium ions, phosphonium ions, piperazinium ions and sulfonium ions in addition to sodium ions. These cations do not have adverse effects on a positive electrode (1). In addition, the melting point of the molten salt, which contains sodium ions and the above-mentioned cations, is significantly lower than the operating temperature of sodium-sulfur batteries, said operating temperature being 280-360 DEG C. Consequently, the molten salt battery is capable of operating at lower temperatures than sodium-sulfur batteries.
摘要:
Provided is a method for manufacturing a molten salt battery. The method includes a housing step (S100) for housing a positive electrode, a negative electrode and a separator in a battery container; an injecting step (S110) for injecting the molten salt into the battery container while heating the battery container; a closing step (S120) for closing the battery container with a closing lid; a heating and drying step (S130) for heating the battery container in a vacuum state with a check valve open; and a sealing step (S150) for closing the check valve. In summary, the positive electrode, negative electrode, separator and molten salt are heated and dried in a vacuum state.
摘要:
[Object] To provide a gas decomposition apparatus and a gas decomposition method in which no safety problems occur in spite of the application of a relatively high voltage between an anode and a cathode for the purpose of decomposing odorous gases of many types.[Solution] A catalytic electrode layer 6 that contains a catalyst and is porous; a counter electrode layer 7 that forms a pair with the catalytic electrode; and an electrolyte layer 15 that is sandwiched between the catalytic electrode and the counter electrode and has ion conductivity are included. The catalyst is held by the catalytic electrode in the form of being carried by a carrier containing a conductive material or the catalyst is directly carried by the catalytic electrode. A conductive material in the catalytic electrode, the conductive material being in contact with the catalyst, is not a noncovalent carbon material.
摘要:
A negative electrode precursor material is provided for preparing a negative electrode, which has a reduced thickness, good current collecting performance, and suppresses deformation and generation of dendrites during operation. A molten salt battery comprises a positive electrode formed by providing an active material film on an Al current collector, a separator comprising a glass cloth impregnated with a molten salt as an electrolyte, and the negative electrode formed by providing a Zn film and an active material film on an Al, current collector, which are respectively contained in a substantially rectangular parallelepiped Al case. The active material absorbs and releases Na ions contained in the molten salt.
摘要:
A separator of a molten salt battery made of a porous resin sheet. The separator is improved in wettability to a molten salt by giving hydrophilicity to the resin sheet. In the case of a fluororesin sheet, the sheet is impregnated with water, and irradiated with ultraviolet rays so that C—F bonds in the fluororesin are cleaved and the resultant reacts with water to generate hydrophilic groups, such as OH groups, in each surface layer thereof. The separator gains hydrophilicity through the hydrophilic groups. The separator made of the resin can be made into a bag form. In a molten salt battery having the bag-form separator, the growth of a dendrite is prevented.
摘要:
A contact probe, a method of manufacturing a linked body of contact probes, and a method of manufacturing a contact probe, which allow for stable use are provided. Contact probe includes a contact portion to be brought into contact with an object to be measured, a main body portion connected to the contact portion, and a covering portion covering the whole circumference of a cross section of the main body portion in a direction intersecting with an extensional direction, excluding the contact portion. The covering portion is of a material having a lower volume resistivity than a volume resistivity of a material of the main body portion.
摘要:
In a molten salt battery device, molten salt batteries are arranged in a container to cause a space to be present around the molten salt batteries, and a heating medium is filled into the space around the molten salt batteries. When an electrothermal heater is used to control the temperature of the heating medium through a temperature controlling section, the heating medium is caused to flow. Between the flowing heating medium and the molten salt batteries, heat is exchanged, whereby the molten salt battery device controls the temperature of the molten salt batteries. Since the molten salt batteries attain the heat exchange with the heating medium, which surrounds the batteries, the internal temperature thereof is evenly controlled. Moreover, the molten salt battery device makes it possible to lower the temperature of the heating medium to cool the molten salt batteries easily.