Abstract:
Various examples pertaining to a sensor housing design for millimeter wave (mmWave) sensors are described. A sensor housing may include a radar sensor, a printed circuit board (PCB), a radome and a PCB holder. The radar sensor may be capable of emitting a radio wave. The PCB may have a first side and a second side opposite the first side with the radar sensor mounted on the first side thereof to form a PCB assembly (PCBA). The radome may include a cavity in which the PCBA is disposed. The PCB holder may be disposed along a circumference of an inner wall of the radome, and the PCB holder may be configured to hold the PCBA such that a distance between an inner surface of the radome and a side of the radar sensor facing the inner surface of the radome is proportional to half wavelength of the radio wave.
Abstract:
A wireless test system includes a load board having an upper surface and a lower surface. The load board has a testing antenna disposed on the load board. A socket for receiving a device under test (DUT) having an antenna structure therein is disposed on the upper surface of the load board. The antenna structure is aligned with the testing antenna. The wireless test system further includes a handler for picking up and delivering the DUT to the socket. The handler has a clamp for holding and pressing the DUT. The clamp is grounded during testing and functions as a ground reflector that reflects and reverses radiation pattern of the DUT from an upward direction to a downward direction toward the testing antenna.
Abstract:
An object detection method includes: obtaining a first offset value and a second offset value, setting a first detection threshold value by adding the first offset value to a first reference threshold value, setting a second detection threshold value by adding the second offset value to a second reference threshold value, obtaining a detection input, and performing target detection upon the detection input according to at least the first detection threshold value and the second detection threshold value. The first offset value is different from the second offset value. The first reference threshold value is determined for detecting if at least one object with a first value of an object characteristic exists. The second reference threshold value is determined for detecting if at least one object with a second value of the object characteristic exists. The second value is different from the first value.
Abstract:
Various examples pertaining to a sensor housing design for millimeter wave (mmWave) sensors are described. A sensor housing may include a radar sensor, a printed circuit board (PCB), a radome and a PCB holder. The radar sensor may be capable of emitting a radio wave. The PCB may have a first side and a second side opposite the first side with the radar sensor mounted on the first side thereof to form a PCB assembly (PCBA). The radome may include a cavity in which the PCBA is disposed. The PCB holder may be disposed along a circumference of an inner wall of the radome, and the PCB holder may be configured to hold the PCBA such that a distance between an inner surface of the radome and a side of the radar sensor facing the inner surface of the radome is proportional to half wavelength of the radio wave.
Abstract:
A digital transmitter includes: a plurality of adjustable delay lines arranged to delay a plurality of digital input signals by a plurality of delay times to generate a plurality of delayed digital input signals respectively; a plurality of converting devices arranged to convert the plurality of delayed digital input signals into a plurality of converting signals respectively; and a calibration device arranged to adjust a delay time of at least one adjustable delay line in the plurality of adjustable delay lines to make the plurality of converting devices convert the plurality of delayed digital input signals at respective desire time points.