摘要:
There is presented a method of forming a semiconductor device. The method comprises forming gate structures including forming gate electrodes over a semiconductor substrate and forming spacers adjacent the gate electrodes. Source/drains are formed adjacent the gate structures, and a laminated stress layer is formed over the gate structure and the semiconductor substrate. The formation of the laminated stress layer includes cycling a deposition process to form a first stress layer over the gate structures and the semiconductor substrate and at least a second stress layer over the first stress layer. After the laminated layer is formed, it is subjected to an anneal process conducted at a temperature of about 900° C. or greater.
摘要:
Slim spacers are implemented in transistor fabrication. More particularly, wide sidewall spacers are initially formed and used to guide dopants into source/drain regions in a semiconductor substrate. The wide sidewall spacers are then removed and slim sidewall spacers are formed alongside a gate stack of the transistor. The slim spacers facilitate transferring stress from an overlying pre metal dielectric (PMD) liner to a channel of the transistor, and also facilitate reducing a resistance in the transistor by allowing silicide regions to be formed closer to the channel. This mitigates yield loss by facilitating predictable or otherwise desirable behavior of the transistor.
摘要:
The invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, among others, may include forming one or more layers of material within an opening in a substrate, the opening and the one or more layers forming at least a portion of an isolation structure, and subjecting at least one of the one or more layers to an energy beam treatment, the energy beam treatment configured to change a stress of the one or more layers subjected thereto, and thus change a stress in the substrate.
摘要:
Provided is a method for manufacturing a gate dielectric. This method, without limitation, includes subjecting a silicon substrate to a first plasma nitridation process to incorporate a nitrogen region therein. This method further includes growing a dielectric material layer over the nitrogen region using a nitrogen containing oxidizer gas, and subjecting the dielectric material layer to a second plasma nitridation process, thereby forming a nitrided dielectric material layer over the nitrogen region.
摘要:
Slim spacers are implemented in transistor fabrication. More particularly, wide sidewall spacers are initially formed and used to guide dopants into source/drain regions in a semiconductor substrate. The wide sidewall spacers are then removed and slim sidewall spacers are formed alongside a gate stack of the transistor. The slim spacers facilitate transferring stress from an overlying pre metal dielectric (PMD) liner to a channel of the transistor, and also facilitate reducing a resistance in the transistor by allowing silicide regions to be formed closer to the channel. This mitigates yield loss by facilitating predictable or otherwise desirable behavior of the transistor.
摘要:
The present invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device, among other steps, may include forming a gate structure over a substrate, forming at least a portion of gate sidewall spacers proximate sidewalls of the gate structure, and subjecting the at least a portion of the gate sidewall spacers to an energy beam treatment, the energy beam treatment configured to change a stress of the at least a portion of the gate sidewall spacers, and thus change a stress in the substrate therebelow.
摘要:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that apply tensile strain to channel regions of devices while mitigating unwanted dopant diffusion, which degrades device performance. Source/drain regions are formed in active regions of a PMOS region (102). A first thermal process is performed that activates the formed source/drain regions and drives in implanted dopants (104). Subsequently, source/drain regions are formed in active regions of an NMOS region (106). Then, a capped poly layer is formed over the device (108). A second thermal process is performed (110) that causes the capped poly layer to induce strain into the channel regions of devices. Because of the first thermal process, unwanted dopant diffusion, particularly unwanted p-type dopant diffusion, during the second thermal process is mitigated.
摘要:
The present invention pertains to forming respective suicides on multiple transistors in a single process. High performance is facilitated with simple and highly integrated process flows. As such, transistors, and an integrated circuit containing the transistors, can be fabricated efficiently and at a low cost. The different suicides can be formed with different materials and/or to different thicknesses. As such, the silicides can have different electrical characteristics, such as resistivity and conductivity. These different attributes instill the transistors with different work functions when formed as gate contacts thereon. This provides an integrated circuit containing the transistors with diverse operating capabilities allowing for the execution of operations requiring more flexibility and/or functionality.
摘要:
A method of fabricating a transistor comprises forming a gate structure outwardly of a semiconductor substrate, wherein the gate structure comprises a gate, a gate insulator and sidewalls and forming source region and a drain region in the substrate using the gate structure as a mask, wherein a channel is defined in the substrate between the source region and the drain region. A bottomwall/sidewall junction capacitance reduction region extending within and between the source region and the drain region is formed, wherein the bottomwall/sidewall junction capacitance reduction region extends at least partially through the bottomwall junction or the sidewall junction.
摘要:
A transistor is formed in a semiconductor substrate with a gate over a channel region, source/drain extension regions in the substrate adjacent the channel region, and source/drain regions in the substrate adjacent the source/drain extension regions. Silicide is formed on the source/drain extension regions and the source/drain regions so that the silicide has a first thickness over the source/drain extension regions and a second thickness over source/drain regions, with the second thickness being greater than the first thickness. Silicide on the source/drain extension regions lowers transistor series resistance which boosts transistor performance and also protects the source/drain extension regions from silicon loss and silicon damage during contact etch.