摘要:
Slim spacers are implemented in transistor fabrication. More particularly, wide sidewall spacers are initially formed and used to guide dopants into source/drain regions in a semiconductor substrate. The wide sidewall spacers are then removed and slim sidewall spacers are formed alongside a gate stack of the transistor. The slim spacers facilitate transferring stress from an overlying pre metal dielectric (PMD) liner to a channel of the transistor, and also facilitate reducing a resistance in the transistor by allowing silicide regions to be formed closer to the channel. This mitigates yield loss by facilitating predictable or otherwise desirable behavior of the transistor.
摘要:
Slim spacers are implemented in transistor fabrication. More particularly, wide sidewall spacers are initially formed and used to guide dopants into source/drain regions in a semiconductor substrate. The wide sidewall spacers are then removed and slim sidewall spacers are formed alongside a gate stack of the transistor. The slim spacers facilitate transferring stress from an overlying pre metal dielectric (PMD) liner to a channel of the transistor, and also facilitate reducing a resistance in the transistor by allowing silicide regions to be formed closer to the channel. This mitigates yield loss by facilitating predictable or otherwise desirable behavior of the transistor.
摘要:
Slim spacers are implemented in transistor fabrication. More particularly, wide sidewall spacers are initially formed and used to guide dopants into source/drain regions in a semiconductor substrate. The wide sidewall spacers are then removed and slim sidewall spacers are formed alongside a gate stack of the transistor. The slim spacers facilitate transferring stress from an overlying pre metal dielectric (PMD) liner to a channel of the transistor, and also facilitate reducing a resistance in the transistor by allowing silicide regions to be formed closer to the channel. This mitigates yield loss by facilitating predictable or otherwise desirable behavior of the transistor.
摘要:
A method of manufacturing a semiconductor device that includes forming a gate dielectric layer over a semiconductor substrate. A gate electrode is formed over the gate dielectric layer. A dopant is implanted into an extension region of the substrate, with an amount of the dopant remaining in a dielectric layer adjacent the gate electrode. The substrate is annealed at a temperature of about 1000° C. or greater to cause at least a portion of the amount of the dopant to diffuse into the semiconductor substrate.
摘要:
Pipe defects in n-type lightly doped drain (NLDD) regions and n-type source/drain (NDS) regions are associated with arsenic implants, while excess diffusion in NLDD and NSD regions is mainly due to phosphorus interstitial movement. Carbon implanatation is commonly used to reduce phosphorus diffusion in the NLDD, but contributes to gated diode leakage (GDL). In high threshold NMOS transistors GDL is commonly a dominant off-state leakage mechanism. This invention provides a method of forming an NMOS transistor in which no carbon is implanted into the NLDD, and the NSD is formed by a pre-amorphizing implant (PAI), a phosphorus implant and a carbon species implant. Use of carbon in the NDS allows a higher concentration of phosphorus, resulting in reduced series resistance and reduced pipe defects. An NMOS transistor with less than 1·1014 cm−2 arsenic in the NSD and a high threshold NMOS transistor formed with the inventive method are also disclosed
摘要:
In one aspect there is provided a method of manufacturing a semiconductor device comprising forming gate electrodes over a semiconductor substrate, forming source/drains adjacent the gate electrodes, depositing a stress inducing layer over the gate electrodes. A laser anneal is conducted on at least the gate electrodes subsequent to depositing the stress inducing layer at a temperature of at least about 1100° C. for a period of time of at least about 300 microseconds, and the semiconductor device is subjected to a thermal anneal subsequent to conducting the laser anneal.
摘要:
There is presented a method of forming a semiconductor device. The method comprises forming gate structures including forming gate electrodes over a semiconductor substrate and forming spacers adjacent the gate electrodes. Source/drains are formed adjacent the gate structures, and a laminated stress layer is formed over the gate structure and the semiconductor substrate. The formation of the laminated stress layer includes cycling a deposition process to form a first stress layer over the gate structures and the semiconductor substrate and at least a second stress layer over the first stress layer. After the laminated layer is formed, it is subjected to an anneal process conducted at a temperature of about 900° C. or greater.
摘要:
The present invention provides a method for manufacturing a semiconductor device. The method for manufacturing the semiconductor device includes, among other steps, forming a gate structure over a substrate, the gate structure having source/drain regions proximate thereto and in, on or over the substrate, forming a pre-metal dielectric layer over the gate structure and source/drain regions, and subjecting the pre-metal dielectric layer to an energy beam treatment, the energy beam treatment configured to change a stress of the pre-metal dielectric layer, and thus change a stress in the substrate therebelow.
摘要:
A method (1300) of forming a semiconductor device comprising an isolation structure is disclosed, and includes forming a trench region within a semiconductor body (1308). Then, surfaces of the trench region are nitrided (1310) via a nitridation process. An oxidation process is performed that combines with the nitrided surfaces (1312) to form a nitrogen containing liner. Subsequently, the trench region is filled with dielectric material (1316) and then planarized (1318) to remove excess dielectric fill material.
摘要:
A method (200) of forming an isolation structure is presented, in which a hard mask layer (304, 308) is formed (204, 206) over the isolation and active regions (305, 303) of a semiconductor body (306), and a dopant is selectively provided to a portion of the active region (303) proximate the isolation region (305) to create a threshold voltage compensation region (318). After the compensation region (318) is created, the hard mask layer (304, 308) is patterned (218) to create a patterned hard mask. The patterned hard mask is then used in forming (222) a trench (323) in the isolation region (305) near the compensation region (318), and the trench (323) is then filled (224) with a dielectric material (338).