摘要:
The invention relates to a method for fabricating a drift zone of a vertical semiconductor component and to a vertical semiconductor component having the following features: a semiconductor body (100) having a first side (101) and a second side (102), a drift zone (30) of a first conduction type which is arranged in the region between the first and the second sides (101, 102) and is formed for the purpose of taking up a reverse voltage, a field electrode arrangement arranged in the drift zone (30) and having at least one electrically conducted field electrode (40; 40A–40E; 90A–90J) arranged in a manner insulated from the semiconductor body (100), an electrical potential of the at least one field electrode (40; 40A–40E; 90A–90J) varying in the vertical direction of the semiconductor body (100) at least when a reverse voltage is applied.
摘要:
A trench power semiconductor component is described which has an edge cell in which an edge trench is provided. The edge trench, at least on an outer side wall, has a thicker insulating layer than an insulating layer of trenches of the cell array. This simple configuration provides a high dielectric strength and is economical to produce.
摘要:
One embodiment provides a semiconductor component including a semiconductor body having a first side and a second side and a drift zone; a first semiconductor zone doped complementarily to the drift zone and adjacent to the drift zone in a direction of the first side; a second semiconductor zone of the same conduction type as the drift zone adjacent to the drift zone in a direction of the second side; at least two trenches arranged in the semiconductor body and extending into the semiconductor body and arranged at a distance from one another; and a field electrode arranged in the at least two trenches adjacent to the drift zone. The at least two trenches are arranged at a distance from the second semiconductor zone in the vertical direction, a distance between the trenches and the second semiconductor zone is greater than 1.5 times the mutual distance between the trenches, and a doping concentration of the drift zone in a section between the trenches and the second semiconductor zone differs by at most 35% from a minimum doping concentration in a section between the trenches.
摘要:
A semiconductor device includes a trench region extending into a drift zone of a semiconductor body from a surface. The semiconductor device further includes a dielectric structure extending along a lateral side of the trench region, wherein a part of the dielectric structure is a charged insulating structure. The semiconductor device further includes a gate electrode in the trench region and a body region of a conductivity type other than the conductivity type of the drift zone. The charged insulating structure adjoins each one of the drift zone, the body region and the dielectric structure and further adjoins or is arranged below a bottom side of a gate dielectric of the dielectric structure.
摘要:
A lateral HEMT includes a substrate, a first semiconductor layer above the substrate and a second semiconductor layer on the first semiconductor layer. The lateral HEMT further includes a gate electrode, a source electrode, a drain electrode and a rectifying Schottky junction. A first terminal of the rectifying Schottky junction is electrically coupled to the source electrode and a second terminal of the rectifying Schottky junction is electrically coupled to the second semiconductor layer.
摘要:
A semiconductor device including a connecting structure includes an edge region, a first trench and a second trench running toward the edge region, a first electrode within the first trench, and a second electrode within the second trench, the first and second electrodes being arranged in a same electrode plane with regard to a main surface of a substrate of the electronic device within the trenches, and the first electrode extending, at an edge region side end of the first trench, farther toward the edge region than the second electrode extends, at an edge region side end of the second trench, toward the edge region.
摘要:
A semiconductor component having a semiconductor body having first and second semiconductor regions of a first conduction type, and a third semiconductor region of a second conduction type, which is complementary to the first conduction type. The second semiconductor region is arranged between the first and third semiconductor region and together with the first semiconductor region forms a first junction region and together with the third semiconductor region forms a second junction region. In the second semiconductor region the dopant concentration is lower than the dopant concentration in the first semiconductor region. The dopant concentration in the second semiconductor region along a straight connecting line between the first and third semiconductor regions is inhomogeneous and has at least one minimum between the first and second junction regions, wherein the minimum is at a distance from the first and second junction regions.
摘要:
A semiconductor component with a drift region and a drift control region. One embodiment includes a semiconductor body having a drift region of a first conduction type in the semiconductor body. A drift control region composed of a semiconductor material, which is arranged, at least in sections, is adjacent to the drift region in the semiconductor body. An accumulation dielectric is arranged between the drift region and the drift control region.
摘要:
A semiconductor component having a semiconductor body having first and second semiconductor regions of a first conduction type, and a third semiconductor region of a second conduction type, which is complementary to the first conduction type. The second semiconductor region is arranged between the first and third semiconductor region and together with the first semiconductor region forms a first junction region and together with the third semiconductor region forms a second junction region. In the second semiconductor region the dopant concentration is lower than the dopant concentration in the first semiconductor region. The dopant concentration in the second semiconductor region along a straight connecting line between the first and third semiconductor regions is inhomogeneous and has at least one minimum between the first and second junction regions, wherein the minimum is at a distance from the first and second junction regions.
摘要:
A connecting structure for an electronic device includes an edge region of the device, a first trench and a second trench running toward the edge region, a first electrode within the first trench, and a second electrode within the second trench, the first and second electrodes being arranged in a same electrode plane with regard to a main surface of a substrate of the electronic device within the trenches, and the first electrode extending, at an edge region side end of the first trench, farther toward the edge region than the second electrode extends, at an edge region side end of the second trench, toward the edge region.