摘要:
A method for depositing a carbon doped epitaxial semiconductor layer comprises maintaining a pressure of greater than about 700 torr in a process chamber housing a patterned substrate having exposed single crystal material. The method further comprises providing a flow of a silicon source gas to the process chamber. The silicon source gas comprises dichlorosilane. The method further comprises providing a flow of a carbon precursor to the process chamber. The method further comprises selectively depositing the carbon doped epitaxial semiconductor layer on the exposed single crystal material.
摘要:
Methods and apparatuses for selective epitaxial formation of films separately inject reactive species into a CVD chamber. The methods are particularly useful for selective deposition using volatile combinations of precursors and etchants. Formation processes include simultaneous supply of precursors and etchants for selective deposition, or sequential supply for cyclical blanket deposition and selective etching. In either case, precursors and etchants are provided along separate flow paths that intersect in the relatively open reaction space, rather than in more confined upstream locations.
摘要:
A method to optimize semiconductor processing equipment (hardware settings and process conditions) to minimize non-uniformities within a wafer based on linescan measurements and a calculation of or prediction for a polar map. Measurements of a metrology value are taken at a number of points along a linescan (or two orthogonal linescans) on the wafer surface for a number of wafer processed in a set of experiments in which one equipment setting or process parameter is adjusted per experiment. The raw data are then normalized and weighted in accordance with the radial distance from the center of the wafer. Standard deviations of different metrology values within the wafer are then calculated. The setting can then be further adjusted to predict and to minimize the standard deviations, and therefore non-uniformity of the metrology values within the wafer, using the method without processing any additional test wafers.
摘要:
An aircraft with aerofoils including a main wing and a control flap that includes an adjustment flap. The aircraft includes an actuator for the control flap, as well as a sensor device for acquiring the position of the control flap, an arrangement of flow-influencing devices for influencing the fluid that flows over a segment of the main wing, and flow-state sensor devices for measuring the flow state. The aircraft includes a flight control device connected to the sensor device for acquiring the position of the control flap and to the flow-state sensor devices, and connected to the actuator and flow-influencing devices for transmitting actuating commands, and a flight-state sensor device connected to the flight control device for transmitting flight states. The flight control device includes a function that selects the flow-influencing devices that are operated for optimizing local lift coefficients on the aerofoil, depending on the flight state.
摘要:
A gas panel according to various aspects of the present invention is configured to deliver a constant flow rate of gases to a reaction chamber during a deposition process step. In one embodiment, the gas panel comprises a deposition sub-panel having a deposition injection line, a deposition vent line, and at least one deposition process gas line. The deposition injection line supplies a mass flow rate of a carrier gas to a reactor chamber. Each deposition process gas line may include a pair of switching valves that are configured to selectively direct a deposition process gas to the reactor chamber or a vent line. The deposition vent line also includes a switching valve configured to selectively direct a second mass flow rate of the carrier gas that is equal to the sum of the mass flow rate for all of the deposition process gases to the reactor chamber or a vent line. The gas panel is configured to substitute the mass flow rate of the deposition vent line with the mass flow rate of the deposition process lines, such that when the deposition vent line is directed to the reactor chamber the deposition process lines are directed to the vent line and when the deposition vent line is directed to the vent line the deposition process lines are directed to the reactor chamber. The substitution of the two mass flow rates maintains a constant mass flow rate of gases to the reactor chamber throughout the deposition process step.
摘要:
A gas panel according to various aspects of the present invention is configured to deliver a constant flow rate of gases to a reaction chamber during a deposition process step. In one embodiment, the gas panel comprises a deposition sub-panel having a deposition injection line, a deposition vent line, and at least one deposition process gas line. The deposition injection line supplies a mass flow rate of a carrier gas to a reactor chamber. Each deposition process gas line may include a pair of switching valves that are configured to selectively direct a deposition process gas to the reactor chamber or a vent line. The deposition vent line also includes a switching valve configured to selectively direct a second mass flow rate of the carrier gas that is equal to the sum of the mass flow rate for all of the deposition process gases to the reactor chamber or a vent line. The gas panel is configured to substitute the mass flow rate of the deposition vent line with the mass flow rate of the deposition process lines, such that when the deposition vent line is directed to the reactor chamber the deposition process lines are directed to the vent line and when the deposition vent line is directed to the vent line the deposition process lines are directed to the reactor chamber. The substitution of the two mass flow rates maintains a constant mass flow rate of gases to the reactor chamber throughout the deposition process step.
摘要:
Methods of making Si-containing films that contain relatively high levels of Group III or Group V dopants involve chemical vapor deposition using trisilane and a dopant precursor. Extremely high levels of substitutional incorporation may be obtained, including crystalline silicon films that contain at least about 3×1020 atoms cm−3 of an electrically active dopant. Substitutionally doped Si-containing films may be selectively deposited onto the crystalline surfaces of mixed substrates by introducing an etchant gas during deposition.
摘要:
Methods and apparatuses for selective epitaxial formation of films separately inject reactive species into a CVD chamber. The methods are particularly useful for selective deposition using volatile combinations of precursors and etchants. Formation processes include simultaneous supply of precursors and etchants for selective deposition, or sequential supply for cyclical blanket deposition and selective etching. In either case, precursors and etchants are provided along separate flow paths that intersect in the relatively open reaction space, rather than in more confined upstream locations.
摘要:
The present invention relates to the use of certain fungicides for increasing the quality and, if appropriate, the quantity of oil crop products. It also relates to the use of these fungicides for reducing the brittleness of the seed coats of seed oil crops. Furthermore, it relates to oil plant products which can be obtained from oil crops which have been treated with these fungicides, for example oils or seeds from oil crops which have been treated in this manner. Furthermore, it also relates to renewable fuels which comprise the oil according to the invention and/or reaction products thereof. Finally, it relates to a method of improving the combustion in engines and furnace installations, in which these are operated at least to some extent with a suitable oil crop product according to the invention.
摘要:
A method comprises, in a reaction chamber, depositing a seed layer of germanium over a silicon-containing surface at a first temperature. The seed layer has a thickness between about one monolayer and about 1000 Å. The method further comprises, after depositing the seed layer, increasing the temperature of the reaction chamber while continuing to deposit germanium. The method further comprises holding the reaction chamber in a second temperature range while continuing to deposit germanium. The second temperature range is greater than the first temperature.