摘要:
A method for making a transparent conductive layer comprising: providing a carbon nanotube film comprising a plurality of carbon nanotubes; providing a conductive substrate and applying an insulating layer on the conductive substrate; laying the carbon nanotube film on a surface of the insulating layer, and placing the carbon nanotube film under a scanning electron microscope; adjusting the scanning electron microscope, and taking photos of the carbon nanotube film with the scanning electron microscope; obtaining a photo of the carbon nanotube film, wherein the photo shows the plurality of carbon nanotubes and a background, a plurality of first carbon nanotubes of the plurality of carbon nanotubes have lighter color than a color of the background, a plurality of second carbon nanotubes of the plurality of carbon nanotubes have deeper color than the color of the background; and removing the plurality of second carbon nanotubes.
摘要:
A method of forming a semiconductor device includes forming a channel layer on a substrate. A gate dielectric is deposited on the channel layer, and a mask is patterned on the gate dielectric. An exposed portion of the gate dielectric is removed to expose a first source/drain region and a second source/drain region of the channel layer. A first source/drain contact is formed on the first source/drain region and a second source/drain contact is formed on the second source/drain region. A cap layer is formed over the first source/drain contact and the second source/drain contact, and the mask is removed. Spacers are formed adjacent to sidewalls of the first source/drain contact and the second source/drain contact. An oxide region is formed in the cap layer and a carbon material is deposited on an exposed portion of the gate dielectric.
摘要:
The present invention discloses an electrode structure, a method of manufacturing an electrode structure, a display substrate and a display device. The method of manufacturing an electrode structure includes: forming a layer of carbon nanotube film on a substrate; performing a doping process in the layer of carbon nanotube film by using a modifier material, and performing a patterning process on the doped layer of carbon nanotube film so as to form a pattern including first electrode; or performing a patterning process on the layer of carbon nanotube film so as to form a patterns including carbon nanotube electrodes, and performing a doping process in the pattern of the carbon nanotube electrodes so as to form a pattern including first electrodes; as such, the carbon nanotubes material is doped with the modifier material, such that the formed first electrode has a lower square resistance value, which may meet the conductivity requirement of the flexible electrode of the flexible display.
摘要:
Methods of making Si-containing films that contain relatively high levels of Group III or Group V dopants involve chemical vapor deposition using trisilane and a dopant precursor. Extremely high levels of substitutional incorporation may be obtained, including crystalline silicon films that contain at least about 3×1020 atoms cm−3 of an electrically active dopant. Substitutionally doped Si-containing films may be selectively deposited onto the crystalline surfaces of mixed substrates by introducing an etchant gas during deposition.
摘要:
Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
摘要:
A method including introducing a fluorine-free organometallic precursor in the presence of a substrate; and forming a conductive layer including a moiety of the organometallic precursor on the substrate according to an atomic layer or chemical vapor deposition process. A method including forming an opening through a dielectric layer to a contact point; introducing a fluorine-free copper film precursor and a co-reactant; and forming a copper-containing seed layer in the opening. A system including a computer including a microprocessor electrically coupled to a printed circuit board, the microprocessor including conductive interconnect structures formed from fluorine-free organometallic precursor.
摘要:
An article comprises first and second electrically responsive elements having a cutting plane which is perpendicular to an x-dimension for separating the elements. The conductive elements of the conductive layers are alternatingly exposed to one of the two opposing faces of the conductive element.
摘要:
Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.
摘要:
Method of forming a termination angle in a titanium tungsten layer include providing a titanium tungsten layer and applying a photo resist material to the titanium tungsten layer. The photo resist material is exposed under a defocus condition to generate a resist mask, wherein an edge of the exposed photo resist material corresponds to the sloped termination. The titanium tungsten layer is etched with an etching material, wherein the etching material at least partially etches the photo resist material exposed under the defocused condition, and wherein the etching results in the sloped termination in the titanium tungsten layer.
摘要:
Methods of producing metal-containing thin films with low impurity contents on a substrate by atomic layer deposition (ALD) are provided. The methods preferably comprise contacting a substrate with alternating and sequential pulses of a metal source chemical, a second source chemical and a deposition enhancing agent. The deposition enhancing agent is preferably selected from the group consisting of hydrocarbons, hydrogen, hydrogen plasma, hydrogen radicals, silanes, germanium compounds, nitrogen compounds, and boron compounds. In some embodiments, the deposition-enhancing agent reacts with halide contaminants in the growing thin film, improving film properties.