Abstract:
Techniques are described herein for addressing tone misalignment between signals of a first radio access technology (RAT) and signals of a second RAT in a combined signal. In some wireless communications systems, the tones of uplink (UL) signals may be shifted up or down based on the configuration of the particular RAT. If UL signals of the first RAT are not shifted in frequency and UL signals of the second RAT are shifted in frequency, processing the combined signal may include additional processing to account for the mismatch.
Abstract:
In some wireless systems (e.g., 5G new radio (NR) systems), a user equipment (UE) may experience coexistence interference when using collocated radio transceivers to simultaneously communicate using different radio access technologies (RATs). To mitigate the coexistence interference, the UE may transmit a configuration request to a base station, where the configuration request may identify that the UE is operating on multiple RATs, identify that the UE is experiencing coexistence interference, or request specific reference signal settings or resources. The base station may modify reference signal transmissions and settings based on the configuration request. For example, the base station may transmit more frequent channel state information reference signals (CSIRS) to the UE, and the UE may report channel state information (CSI) more frequently in response. In other cases, the base station may modify a demodulation reference signal (DMRS) pattern, CSIRS resources, or CSI reporting settings based on the configuration request.
Abstract:
Tracking reference signal designs for deployments without continuous reference signal transmission are described. The tracking reference signals may be extended in the frequency domain from a synchronization signal block and may occupy a subset or all of the symbol periods of the synchronization signal block. The tracking reference signals may have the same subcarrier spacing as synchronization signals and may be punctured in the frequency domain. Alternatively, the tracking reference signals may include common control reference signals transmitted periodically with paired reference signals in a data channel. The common control reference signals and paired reference signals may be transmitted regardless of the presence of control or data. For improved tracking after a transition to a connected mode or a long discontinuous reception (DRX) cycle, a slot including tracking reference signals may be repeated or an additional tracking reference signal pattern may be transmitted.
Abstract:
Certain aspects of the present disclosure relate to methods and apparatus for adjusting flow rate of transmissions received at a device. A user equipment (UE) determines, in response to detecting a trigger condition, a proposal to adjust feedback provided to a base station (BS) in order to adjust a flow rate of transmissions received at the UE from the BS. The UE adjusts the feedback based on the proposal and at least one additional condition and transmits the adjusted feedback to the BS.
Abstract:
Methods, systems, and devices for wireless communication between a first wireless device and a second wireless device are described. A second wireless device may determine that a channel condition satisfies at least one channel condition threshold. The second wireless device may identify, based on the determination, a time-interleaved transmission scheme for block(s) of encoded information. The second wireless device may transmit the block(s) of encoded information to a first wireless device in accordance with at least the time-interleaved transmission scheme. In some instances, the first wireless device may determine that the channel condition satisfies the at least one channel condition threshold and send a message to the second wireless device in order to trigger the use of the time-interleaved transmission scheme.
Abstract:
Systems, methods, apparatuses, and computer-readable storage media for managing power consumption of a mobile device are disclosed. The systems, method, apparatus, and computer-readable storage medium may cause the base station to identify an energy metric associated with a mobile device, and to configure the transmission between the base station and the mobile device based at least in part on the energy metric. The configuration of the transmission may reduce the power consumption of the mobile device for processing the transmission.
Abstract:
Aspects of the present disclosure generally relate to wireless communication and to mechanisms designed to help improve dynamic sharing of one or more receive chains among different radio access technologies (RATs). For example, the mechanisms may be used with LTE and other RATs where Carrier Aggregation is used for simultaneous voice and LTE (SV-LTE) applications.
Abstract:
Systems and method of embodiments herein operate to conserve battery power of user equipment (UE). Embodiments determine whether waking up a UE receiver would be beneficial and based on the determination, the UE either wakes up the receiver or returns to sleep. Embodiments determine whether to wake up the receiver by performing pre-wake up (PWU) operation which either wakes up the receiver in a low power mode or wakes up the UE's wake up receiver. It may be determined whether a wake up (WU) signal is received during a PWU stage. If a WU signal is received during the PWU stage the UE may perform a full wake up of the receiver. If a WU signal is not received the UE may return to idle mode. In embodiments, WU (Wake Up) DRX cycles are supplemented with a Full DRX (Discontinuous Reception) cycle.
Abstract:
Methods and apparatus for beamforming for femtocells, such as in LTE wireless networks, to provide inter-cell coordination and interference mitigation are disclosed. A macrocell user equipment (UE) may determine information regarding an interfering femtocell node, such as a home eNodeB (HeNB). The information may be sent directly or indirectly, such as by a backhaul communication link, to the HeNB. The HeNB may adjust an output based on the information. The information may include spatial channel information, which may be used for beamforming at the HeNB output so as to mitigate interference in the direction of the UE.
Abstract:
Techniques and apparatus are provided for conditional offload of one or more LLRs or decoded bits. An exemplary electronic device (ED) method includes receiving a transmission of a physical downlink shared channel (PDSCH) having a transport block (TB) comprising at least one code block (CB), performing a cyclic redundancy check (CRC) of the at least one CB, in a memory external to a modem core of the ED, storing a subset of log-likelihood ratios (LLRs) associated with the at least one CB if the at least one CB failed the CRC or decoded bits associated with the at least one CB if the at least one CB passed the CRC, wherein the subset is based on an LLR range of the transmission relative to an LLR range of one or more previous transmissions, and using the stored subset of LLRs or decoded bits to process a re-transmission of the PDSCH.