Abstract:
Methods for forming backside illuminated (BSI) image sensors having metal redistribution layers (RDL) and solder bumps for high performance connection to external circuitry are provided. In one embodiment, a BSI image sensor with RDL and solder bumps may be formed using a temporary carrier during manufacture that is removed prior to completion of the BSI image sensor. In another embodiment, a BSI image sensor with RDL and solder bumps may be formed using a permanent carrier during manufacture that partially remains in the completed BSI image sensor. A BSI image sensor may be formed before formation of a redistribution layer on the front side of the BSI image sensor. A redistribution layer may, alternatively, be formed on the front side of an image wafer before formation of BSI components such as microlenses and color filters on the back side of the image wafer.
Abstract:
Image sensor pixels, imaging systems, and methods for constructing image sensor pixels. The image sensor pixel includes a high-light photodetector, a plurality of low-light photodetectors, and a spectral router. The plurality of low-light photodetectors is positioned around the high-light photodetector. The spectral router is positioned above the high-light photodetector and the plurality of low-light photodetectors. The spectral router is configured to route a portion of light received at the spectral router to one or more of the plurality of low-light photodetectors.
Abstract:
A semiconductor device may include a primary circuit chip and an image sensor chip stacked thereon. The image sensor chip may have a backside illuminated (BSI) surface and a frontside surface opposed to the BSI surface, with the image sensor chip being disposed on the primary circuit chip with the frontside surface facing the primary circuit chip. An auxiliary chip may be disposed on the BSI surface of the image sensor chip and connected to the primary circuit chip through the image sensor chip.
Abstract:
An image sensor may include a sensor chip that is bonded to an application-specific integrated circuit (ASIC) chip. A bond pad for the image sensor may be formed in the ASIC chip and exposed through a trench in the sensor chip. The image sensor may include a conductive light shield at a periphery of the image sensor to shield optically black pixels. An opaque layer may be formed over the conductive light shield to mitigate reflections off the conductive light shield. An anti-reflective layer may be formed over the pixel array. The anti-reflective layer may have a different thickness over the pixel array than in the trench for the bond pad.
Abstract:
Implementations of a semiconductor device may include a first semiconductor die hybrid bonded to a second semiconductor die; a bond pad included in the second semiconductor die; a through-silicon-via (TSV) extending entirely through the first semiconductor die and to the bond pad included in the second semiconductor die; and a trench formed entirely through the first semiconductor die and to the bond pad included in the second semiconductor die. The trench may form an edge seal.
Abstract:
An imaging device may include single-photon avalanche diodes (SPADs). To improve the sensitivity and signal-to-noise ratio of the SPADs, light scattering structures may be formed in the semiconductor substrate to increase the path length of incident light through the semiconductor substrate. The light scattering structures may include a low-index material formed in trenches in the semiconductor substrate. One or more microlenses may focus light onto the semiconductor substrate. Areas of the semiconductor substrate that receive more light from the microlenses may have a higher density of light scattering structures to optimize light scattering while mitigating dark current.
Abstract:
An imaging device may include a plurality of single-photon avalanche diode (SPAD) pixels. The SPAD pixels may be overlapped by microlenses to direct light incident on the pixels onto photosensitive regions of the pixels and a containment grid with openings that surround each of the microlenses. During formation of the microlenses, the containment grid may prevent microlens material for adjacent SPAD pixels from merging. To ensure separation between the microlenses, the containment grid may be formed from material phobic to microlens material, or phobic material may be added over the containment grid material. Additionally, the containment grid may be formed from material that can absorb stray or off-angle light so that it does not reach the associated SPAD pixel, thereby reducing crosstalk during operation of the SPAD pixels.
Abstract:
An imaging system may include an image sensor with phase detection pixel groups for depth sensing or automatic focusing operations. Each phase detection pixel group may have two or more photosensitive regions covered by a single microlens so that each photosensitive region has an asymmetric angular response. The image sensor may be sensitive to both near-infrared (NIR) and visible light. Each phase detection pixel group may be designed to include light-scattering structures that increase NIR sensitivity while minimizing disruptions of phase detection and visible light performance. Deep trench isolation may be formed between adjacent photosensitive areas within the phase detection pixel group. The light-scattering structures may have a non-uniform distribution to minimize disruptions of phase detection performance.
Abstract:
An image sensor may include phase detecting and autofocusing (PDAF) pixels. Each pixel may include an inner photodiode region and outer photodiode regions to provide high dynamic range (HDR) capability. Each pixel may include an in infrared blocking filter that selectively covers the inner photodiode region or the outer photodiode regions. Two pixels of the same color but with different infrared blocking filter patterns may be compared to provide infrared sensing. Any color filter array configuration can be used. Instead of an infrared blocking filter, an infrared pass filter may also be used. A first pixel may include an infrared pass filter that selectively covers the inner photodiode region, whereas a second pixel may include an infrared pass filter that selectively covers the outer photodiode regions. The charge collected by the first and second pixels may be compared to provide infrared sensing.
Abstract:
Methods of forming an image sensor chip scale package. Implementations may include providing a semiconductor wafer having a pixel array, forming a first cavity through the wafer and/or one or more layers coupled over the wafer, filling the first cavity with a fill material, planarizing the fill material and/or the one or more layers to form a first surface of the fill material coplanar with a first surface of the one or more layers, and bonding a transparent cover over the fill material and the one or more layers. The bond may be a fusion bond between the transparent cover and a passivation oxide; a fusion bond between the transparent cover and an anti-reflective coating; a bond between the transparent cover and an organic adhesive coupled over the fill material, and/or; a bond between a first metallized surface of the transparent cover and a metallized layer coupled over the wafer.