Abstract:
A novel electronic device including a reconfigurable circuit is provided. In the electronic device including a reconfigurable circuit capable of executing multi-context operation, a context selection signal is locally generated. For example, a context selection signal is generated in the reconfigurable circuit with the use of context determination data contained in an output of another logic block, for example. The range of application of the context selection signal can be set as appropriate by a user. Thus, multi-context operation performed locally and partly enables efficient use of the circuit. Memory usage can be reduced and its efficiency can be improved compared to the case of using global multi-context driving. Other embodiments may be disclosed and claimed.
Abstract:
A semiconductor device that can operate normally with lower power consumption is provided. The semiconductor device includes a pair of first circuits which each include a first transistor and a second transistor capable of controlling the supply of a first signal to a gate of the first transistor, and a second circuit which is capable of generating a second signal which is to be supplied to a gate of the second transistor and which has a larger amplitude than the first signal. One of a source and a drain of one of the first transistors included in the pair of first circuits is electrically connected to one of a source and a drain of the other of the first transistors. The first signals supplied to the gates of the first transistors in the pair of first circuits have potentials with different logic levels.
Abstract:
This invention has for purpose to provide a photosensor that is small in size and can obtain high-contrast image data and to provide a semiconductor device including the photosensor. In the photosensor including a light-receiving element, a transistor serving as a switching element, and a charge retention node electrically connected to the light-receiving element through the transistor, the reduction in charge held in the charge retention node is suppressed by extending the fall time of the input waveform of a driving pulse supplied to the transistor to turn off the transistor.
Abstract:
A programmable logic device includes a plurality of programmable logic elements (PLE) whose electrical connection is controlled by first configuration data. Each of The PLEs includes an LUT in which a relationship between a logic level of an input signal and a logic level of an output signal is determined by second configuration data, an FF to which the output signal of the LUT is input, and an MUX. The MUX includes at least two switches each including first and second transistor. A signal including third configuration data is input to a gate of the second transistor through the first transistor. The output signal of the LUT or an output signal of the FF is input to one of a source and a drain of the second transistor.
Abstract:
A dynamic reconfigurable semiconductor device is provided. The semiconductor device includes two logic blocks, a pass transistor, two selection transistors and a precharge transistor. The two selection transistors are arranged to sandwich the pass transistor so that a source and a drain of the pass transistor are located between the sources of the two selection transistors. The sources and the drains of the two selection transistors are located between the two logic blocks. When the two selection transistors are in off-state, a potential can be supplied to the source or the drain of the pass transistor via the precharge transistor, and by electrical conduction, another potential for a context is applied to the gate of the pass transistor. When the context is executed, the gate of the pass transistor is in a floating state, the two selection transistors are in on-state, and the precharge transistor is in off-state.
Abstract:
A semiconductor device in which operation delay due to stop and restart of the supply of a power supply potential is suppressed is provided. Potentials corresponding to data held in first and second nodes while the supply of a power supply potential is continued are backed up in third and fourth nodes while the supply of the power supply potential is stopped. After the supply of the power supply potential is restarted, data are restored to the first and second nodes by utilizing a change in channel resistance of a transistor whose gate is electrically connected to the third or fourth node. Note that shoot-through current is suppressed at the time of data restoration by electrically disconnecting the power supply potential and the first or second node from each other.
Abstract:
In a CMOS image sensor in which a plurality of pixels is arranged in a matrix, a transistor in which a channel formation region includes an oxide semiconductor is used for each of a charge accumulation control transistor and a reset transistor which are in a pixel portion. After a reset operation of the signal charge accumulation portion is performed in all the pixels arranged in the matrix, a charge accumulation operation by the photodiode is performed in all the pixels, and a read operation of a signal from the pixel is performed per row. Accordingly, an image can be taken without a distortion.
Abstract:
A semiconductor device that can operate normally with lower power consumption is provided. The semiconductor device includes a pair of first circuits which each include a first transistor and a second transistor capable of controlling the supply of a first signal to a gate of the first transistor, and a second circuit which is capable of generating a second signal which is to be supplied to a gate of the second transistor and which has a larger amplitude than the first signal. One of a source and a drain of one of the first transistors included in the pair of first circuits is electrically connected to one of a source and a drain of the other of the first transistors. The first signals supplied to the gates of the first transistors in the pair of first circuits have potentials with different logic levels.
Abstract:
In a CMOS image sensor in which a plurality of pixels is arranged in a matrix, a transistor in which a channel formation region includes an oxide semiconductor is used for each of a charge accumulation control transistor and a reset transistor which are in a pixel portion. After a reset operation of the signal charge accumulation portion is performed in all the pixels arranged in the matrix, a charge accumulation operation by the photodiode is performed in all the pixels, and a read operation of a signal from the pixel is performed per row. Accordingly, an image can be taken without a distortion.
Abstract:
A semiconductor device having a novel structure is provided. The semiconductor device includes a plurality of operation circuits that can switch different kinds of operation processing; a plurality of switch circuits that can switch a connection state between the operation circuits; and a controller. The operation circuit includes a first memory that stores data corresponding to a weight parameter used in the plurality of kinds of operation processing. The operation circuit executes a product-sum operation by switching weight data in accordance with a context. The switch circuit includes a second memory that stores data for switching a plurality of connection states in response to switching of a second context signal. The controller generates a second context signal on the basis of a first context signal. The amount of data stored in the second memory can be smaller than the amount of data stored in the first memory in the operation circuit.