Abstract:
A dielectric ceramic composition and a multilayer ceramic capacitor containing the same are provided. The dielectric ceramic composition contains a base material powder represented by (1−x)BaTiO3−xPbTiO3 containing a first main ingredient represented by BaTiO3 and a second main ingredient represented by PbTiO3, wherein x satisfies 0.0025≤x≤0.4. The multilayer ceramic capacitor includes a ceramic body in which dielectric layers containing the dielectric ceramic composition are alternately stacked with first and second internal electrodes, and first and second external electrodes formed on both end portions of the ceramic body and respectively electrically connected to the first and second internal electrodes.
Abstract:
Disclosed herein are a method of manufacturing a common mode filter forming a coil electrode by directly patterning metal layers laminated on both surfaces of a core insulating layer while not using a build-up process, and the common mode filter manufactured according to the method.
Abstract:
Disclosed herein is a common mode filter, including: a magnetic substrate; and a body part formed on the magnetic substrate, wherein the body part is configured of an insulating layer surrounding a coil electrode, an outer electrode terminal connected with an end of the coil electrode, and a magnetic resin composite, the insulating layer is formed on the magnetic substrate, having a margin part M disposed at an edge of the magnetic substrate, and the magnetic resin composite is filled in an empty space of the body part including the margin part M, thereby promoting a consecutive flow of magnetic flux that is generated from the coil electrode.
Abstract:
Disclosed herein is a common mode filter, including: first and second coil layers electromagnetically coupled to each other; a pair of external terminals connected to ends of the first coil layer and a pair of external terminals connected to ends of the second coil layer; a first ESD prevention member connecting between the pair of external terminals carrying electric current with the first coil layer and a second ESD prevention member connecting between the pair of external terminals carrying electric current with the second coil layer; and a ground electrode connecting the first ESD prevention member to the second ESD prevention member, wherein the ground electrode has a stepped portion formed at the center.
Abstract:
Disclosed herein is a common mode filter including: a body element including an insulating member enclosing a coil electrode pattern and a magnetic member disposed on one surface or both surfaces of the insulating member; and an insulating layer disposed on at least one side of the body element, thereby increasing an interlayer adhesion between the respective components configuring the common mode filter.
Abstract:
Disclosed herein is a common mode filter, including: an external magnetic layer; an insulating layer formed on the external magnetic layer and having coil electrodes therein; a protecting layer formed on the insulating layer; an internal magnetic layer formed inside an opening part formed in one surface of the protecting layer; and external electrode terminals passing through the protecting layer and connected with end portions of the coil electrodes, so that there can be provided a common mode filter having excellent durability, moisture resistance, and heat resistance.
Abstract:
Disclosed herein is a common mode filter including an internal electrode manufactured in a coil electrode form and provided with a simultaneous coil pattern in which two coil electrodes are overlapped with each other in a single layer in a direction in which a coil is wound, wherein a height of a second insulating layer formed on the internal electrode is higher than an interval between the coils. Therefore, a portion at which a parasitic capacitance is generated may be basically blocked, and a self resonant frequency (SRF) may be increased while filtering performance as the common mode filter is maintained.
Abstract:
The present invention discloses a filter for removing noise, which includes: a lower magnetic body; primary and secondary patterns spirally provided on the lower magnetic body in parallel to each other; an insulating layer for covering the primary and secondary patterns; and an upper magnetic body provided on the insulating layer, wherein the primary and secondary patterns are formed to have a ratio of vertical thickness (T) to horizontal width (W) of 0.27≦T/W≦2.4. According to the present invention, it is possible to improve performance and capacity by implementing high common-mode impedance in the same frequency and reduce manufacturing costs by simplifying structures and processes.
Abstract:
Disclosed herein are an electrostatic discharging structure including single-wall carbon nano tubes disposed between electrodes at a predetermined interval to precisely control discharge starting voltage generating a discharge phenomenon between electrodes, and a method of manufacturing an electrostatic discharging structure.
Abstract:
Disclosed herein is a thin film type chip device, including: a plurality of unit circuit structures laminated on a substrate; and an adhesive layer adhering the unit circuit structures to each other.