Abstract:
A relative rotational angle of a rotary body is measured with respect to a reference angle. First openings are arranged about the circumference of a disk, which rotates integrally with the rotary body, at predetermined pitches. A first detecting element detects the first openings and generates a first binary code. The relative rotational angle of the rotary body is computed in accordance with the first binary code. A second detecting element detects the second openings and generates a second binary code. The reference angle of the rotary body is computed and reset in accordance with the second binary code. Third openings are concentrical with the first and second openings. A third detecting element detects the third openings and generates a third binary code. The reference angle is determined based on the combination of the first and third binary codes.
Abstract:
Disclosed is an objective optical system for an optical pick-up that converges a light beam whose wavelength is shorter than F-line onto an information layer of an optical disc. The objective optical system consists of a refractive lens on which the diffractive lens structure is formed and satisfies the following condition (1); 1/(&ngr;3×&lgr;×10−6)
Abstract:
A rotor is fixed to a steering shaft to rotate with the steering shaft, and outer and inner slits are formed along different circles on the rotor. Outer and inner sensors, which detect the presence or absence of the slits, generate reflective codes and are located next to the rotor. Stored pattern data that matches the reflective code is used to determine the rotational angle. Alternatively, if the pattern data does not match the reflective codes, the rotational angle of the steering shaft is computed on the basis of the reflective codes.
Abstract:
A scanning optical system is provided with a semiconductor laser, a polygonal mirror, which deflects a beam emitted from the semiconductor laser, an f&thgr; lens for converging the beam deflected by the deflector onto a surface to be scanned, and a diffractive surface between the polygonal mirror and the surface to be scanned. The diffractive surface compensates for a lateral chromatic aberration caused by the f&thgr; lens. Further, the diffraction efficiency of the diffractive surface on an optical axis of the f&thgr; lens is smaller than that of a peripheral portion to cancel a power variation due to a variation of the light quantity transmitted through the scanning lens.
Abstract:
An objective optical system for information recording/reproducing, at least one of optical surfaces of the objective optical system comprising a diffraction surface including a first region contributing to converging first, second and third beams and including a diffraction structure formed such that use diffraction orders for the first, second and third beams are 1st-orders and a condition 0.03
Abstract:
A multichip module includes a package substrate, a first semiconductor device, a second semiconductor device and a conductive bump. The first semiconductor device is flip-chip bonded to the package substrate. The first semiconductor device includes a first chip pad on a surface thereof. The second semiconductor device is mounted on the first semiconductor device. The second semiconductor device includes a second chip pad facing the first chip pad. The conductive bump connects the first chip pad to the second chip pad. The conductive bump includes a first metallic body that has a first diffusion rate and a second metallic body that has a second diffusion rate lower than the first diffusion rate.
Abstract:
A rotational angle detector provided with a circular rotary plate integrally rotatable with a rotor of a motor and including a circumferential surface having marks, which are spaced apart by different angular intervals in a circumferential direction. A rotational angle detection unit is arranged along the circumferential direction of the rotary plate to detect a rotational angle of each mark, rotated together with the rotary plate, in a predetermined detection zone. The rotational angle detector determines, when adjacent marks are located in the detection zone, angular intervals between the adjacent marks based on the rotational angle of each mark, specifies a mark that is located in the detection zone based on the determined angular intervals, and detects the rotational angle of the rotor based on the rotational angle of the specified mark rotating in the detection zone.
Abstract:
There is provided an objective lens for an optical pick-up. The objective lens is formed to be a single-element plastic lens having a first surface and a second surface. The first surface is configured to have, within an effective diameter, an inflection point at which a second derivative of a sag of the first surface takes a value of 0. Further, the objective lens having a numerical aperture larger than or equal to 0.75.
Abstract:
An objective optical system for an optical information recording/reproducing apparatus for recording/reproducing for first, second and third optical discs by selectively using three types of substantially collimated light beams including first, second and third light beams respectively having first, second and third wavelengths, wherein at least one of optical surfaces of the objective optical system comprises a diffraction surface having a diffraction structure, the diffraction surface includes a first region defined by first and second optical path difference functions, a second region defined by at least one type of optical path difference function, and a third region defined by at least one type of optical path difference function, the first region satisfies a condition: −0.15
Abstract:
According to an aspect of the invention, an electronic part includes a substrate having a first planar surface, a first bump affixed to the first planar surface of the substrate, a second bump affixed to the first planar surface of the substrate a predetermined distance from the first bump, a MEMS chip including a element, the MEMS chip coupled to the first bump and the second bump, the MEMS chip distanced from the first planar surface, an adhesive region bonding with the first bump, the substrate and the MEMS chip.