Abstract:
The present disclosure, in some embodiments, relates to an integrated chip. The integrated chip includes an image sensing element disposed within a semiconductor substrate. One or more isolation structures are arranged within one or more trenches disposed along a first surface of the semiconductor substrate. The one or more isolation structures are separated from opposing sides of the image sensing element by non-zero distances. The one or more trenches are defined by sidewalls and a horizontally extending surface of the semiconductor substrate. A doped region is laterally arranged between the sidewalls of the semiconductor substrate defining the one or more trenches and is vertically arranged between the image sensing element and the first surface of the semiconductor substrate.
Abstract:
The problem of reducing noise in image sensing devices, especially NIR detectors, is solved by providing ground connections for the reflectors. The reflectors may be grounded through vias that couple the reflectors to grounded areas of the substrate. The grounded areas of the substrate may be P+ doped areas formed proximate the surface of the substrate. In particular, the P+ doped areas may be parts of photodiodes. Alternatively, the reflectors may be grounded through a metal interconnect structure formed over the front side of the substrate.
Abstract:
The present disclosure relates to a BSI image sensor with improved DTI structures, and an associated method of formation. In some embodiments, the BSI image sensor comprises a plurality of image sensing elements disposed within a substrate corresponding to a plurality of pixel regions. A deep trench isolation (DTI) grid is disposed between adjacent image sensing elements and extending from an upper surface of the substrate to positions within the substrate. The DTI grid comprises air-gaps disposed under the upper surface of the substrate, the air-gaps having lower portions surrounded by a first dielectric layer and some upper portions sealed by a second dielectric layer.
Abstract:
A semiconductor structure for back side illumination (BSI) pixel sensors is provided. Photodiodes are arranged within a semiconductor substrate. A metal grid overlies the semiconductor substrate and is made up of metal grid segments that surround outer perimeters of the photodiodes, respectively, such that first openings within the metal grid overlie the photodiodes, respectively. A low-n grid is made up of low-n grid segments that surround the respective outer perimeters of the photodiodes, respectively, such that second openings within the low-n grid overlie the photodiodes, respectively. Color filters are arranged in the first and second openings of the photodiodes and have a refractive index greater than a refractive index of the low-n grid. A substrate isolation grid extends into the semiconductor substrate and is made up of isolation grid segments that surround outer perimeters of the photodiodes, respectively. A method for manufacturing the BSI pixel sensors is also provided.
Abstract:
A semiconductor device includes a substrate having a front side and a back side opposite to each other. A plurality of photodetectors is disposed in the substrate within a pixel region. An isolation structure is disposed within the pixel region and between the photodetectors. The isolation structure includes a back side isolation structure extending from the back side of the substrate to a position in the substrate. A conductive plug structure is disposed in the substrate within a periphery region. A conductive cap is disposed on the back side of the substrate and extends from the pixel region to the periphery region and electrically connects the back side isolation structure to the conductive plug structure. A conductive contact lands on the conductive plug structure, and is electrically connected to the back side isolation structure through the conductive plug structure and the conductive cap.
Abstract:
In some embodiments, a method is provided. The method includes forming a plurality of trenches in a semiconductor substrate, where the trenches extend into the semiconductor substrate from a back-side of the semiconductor substrate. An epitaxial layer comprising a dopant is formed on lower surfaces of the trenches, sidewalls of the trenches, and the back-side of the semiconductor substrate, where the dopant has a first doping type. The dopant is driven into the semiconductor substrate to form a first doped region having the first doping type along the epitaxial layer, where the first doped region separates a second doped region having a second doping type opposite the first doping type from the sidewalls of the trenches and from the back-side of the semiconductor substrate. A dielectric layer is formed over the back-side of the semiconductor substrate, where the dielectric layer fill the trenches to form back-side deep trench isolation structures.
Abstract:
In some embodiments, a method is provided. The method includes forming a plurality of trenches in a semiconductor substrate, where the trenches extend into the semiconductor substrate from a back-side of the semiconductor substrate. An epitaxial layer comprising a dopant is formed on lower surfaces of the trenches, sidewalls of the trenches, and the back-side of the semiconductor substrate, where the dopant has a first doping type. The dopant is driven into the semiconductor substrate to form a first doped region having the first doping type along the epitaxial layer, where the first doped region separates a second doped region having a second doping type opposite the first doping type from the sidewalls of the trenches and from the back-side of the semiconductor substrate. A dielectric layer is formed over the back-side of the semiconductor substrate, where the dielectric layer fill the trenches to form back-side deep trench isolation structures.
Abstract:
The present disclosure relates to an integrated circuit having a bond pad with a relatively flat surface topography that mitigates damage to underlying layers. In some embodiments, the integrated circuit has a plurality of metal interconnect layers within a dielectric structure over a substrate. A passivation structure is arranged over the dielectric structure. The passivation structure has a recess with sidewalls connecting a horizontal surface of the passivation structure to an upper surface of the passivation structure. A bond pad is arranged within the recess and has a lower surface overlying the horizontal surface. One or more protrusions extend outward from the lower surface through openings in the passivation structure to contact one of the metal interconnect layers. Arranging the bond pad within the recess and over the passivation structure mitigates stress to underlying layers during bonding without negatively impacting an efficiency of an image sensing element within the substrate.
Abstract:
In some embodiments, a method is provided. The method includes forming a plurality of trenches in a semiconductor substrate, where the trenches extend into the semiconductor substrate from a back-side of the semiconductor substrate. An epitaxial layer comprising a dopant is formed on lower surfaces of the trenches, sidewalls of the trenches, and the back-side of the semiconductor substrate, where the dopant has a first doping type. The dopant is driven into the semiconductor substrate to form a first doped region having the first doping type along the epitaxial layer, where the first doped region separates a second doped region having a second doping type opposite the first doping type from the sidewalls of the trenches and from the back-side of the semiconductor substrate. A dielectric layer is formed over the back-side of the semiconductor substrate, where the dielectric layer fill the trenches to form back-side deep trench isolation structures.
Abstract:
The present disclosure, in some embodiments, relates to a method of forming an image sensor. The method includes implanting a dopant into a substrate to form a doped region and implanting one or more additional dopants into the substrate to form an image sensing element between the doped region and a front-side of the substrate. The doped region directly contacts a boundary of the image sensing element that is furthest from the front-side of the substrate. The method further includes etching the substrate to form one or more trenches extending into a back-side of the substrate. The back-side of the substrate opposes the front-side of the substrate. The method further includes filling the one or more trenches with one or more dielectric materials to form isolation structures.