Abstract:
A semiconductor memory has plural cell transistors that are arranged in a matrix. The cell transistor comprises a P type silicon substrate, a control gate CG and a pair of electrically isolated floating gates. Plural projections are formed in the silicon substrate, and a pair of N type diffusion regions as the source and the drain is formed in both sides of the projection. The control gate extending in the row direction faces the projection and the floating gate FG1, FG2 via an insulation layer. The width W1 of the floating gate FG1, FG2 in the column direction is larger than the width W2 of the control gate CG, so the floating gate FG1, FG2 and the control gate CG can be manufactured without the self-align process.
Abstract:
A semiconductor memory has plural cell transistors that are arranged in a matrix. The cell transistor comprises a silicon substrate, a control gate, a pair of electrically isolated floating gates. Plural projections are formed in the P type silicon substrate, and a pair of N type diffusion regions as the source and the drain is formed in both sides of the projection. The control gate faces the projection via a fourth insulation layer. The side surface of the floating gates faces the side surfaces of the projection via a first insulation layer, and faces the control gate via a third insulation layer. The floating gate faces the diffusion region via the first insulation layer.
Abstract:
A multiple-bit cell transistor includes a P type silicon substrate, agate insulation layer, a pair of N type source/drain regions, a pair of tunnel insulation layers, and a pair of floating gates. The silicon substrate is formed with a projection while the floating gates each are positioned on one of opposite side walls of the projection. Inter-polycrystalline insulation layers each are formed on one of the floating gates. A control gate faces the top of the projection via the gate insulation layer. An N type region is formed on each side of the projection and contacts the source/drain region adjoining it. The cell transistor lowers a required write voltage, broadens a current window, and enhances resistance to inter-band tunneling.
Abstract:
Disclosed is a solid state imaging device, comprising a unit pixel 101 including a photo diode 111 and a MOS transistor 112 for optical signal detection provided with a high-density buried layer 25 for storing optically generated charges generated by light irradiation in the photo diode 111, a vertical scanning signal driving scanning circuit 102 for outputting a scanning signal to a gate electrode 19, and a voltage boost scanning circuit 108 for outputting a boosted voltage higher than a power source voltage to a source region 16. In this case, a boosted voltage is applied from the voltage boost scanning circuit 108 to the source region 16, and the optically generated charges stored in the high-density buried layer 25 are swept out from the high-density buried layer 25 by a source voltage and a gate voltage risen by the boosted voltage.
Abstract:
A solid-state imaging device is provided, which is capable of increasing an S/N ratio while enhancing a dynamic range, when a photoelectric signal is converted into a digital signal. This solid-state imaging device comprises: a plurality of photoelectric conversion devices arrayed in rows and columns, each of the photoelectric conversion devices converting an optical signal into an electric signal and outputting a first signal voltage; a difference signal generation circuit provided for each column, for sequentially inputting the first signal voltage and a second signal voltage obtained by initializing the photoelectric conversion devices, thereafter converting the first signal voltage and the second signal voltage into charges, generating a difference signal therebetween, and then outputting the difference signal after adjusting a gain according to a level of the difference signal; and an analog/digital conversion circuit connected to the output of the difference signal generation circuit.
Abstract:
The present invention relates to a dual bit nonvolatile programmable read/write memory containing a semiconductor memory element having one conductivity type semiconductor substrate including at least one convex portion. A pair of opposite conductivity source/drain regions are formed on a surface of the semiconductor substrate an opposing sides of the convex portion, and a first insulating film covers the upper surface of the convex portion. Second insulating films cover the side surfaces of the convex portion and the source/drain regions. A pair of floating gates abut opposing side surfaces of the convex portion and the source/drain regions through the second insulating films. Third insulating films are formed on the floating gates. A control gate covers the upper surface of the convex portion through the first insulating film and the floating gates through the third insulating films.
Abstract:
The present invention is a method for detecting photo signals using an imaging device, comprising steps of photo-generating holes in a well region 15 of a photo-diode by a signal light, transferring the photo-generated holes through a bulk of the well region 15 to a heavily doped buried layer 25 which is formed in the well region 15 near a source region 16 by doping that region with impurity heavier than the well region (15) of an insulated gate FET, storing the photo-generated holes in the heavily doped buried layer 25 to thereby change the threshold of the FET corresponding to the amount of the photo-generated charge, and reading the change in the threshold as the amount of signal light received by the photo-sensor.
Abstract:
A phase difference detection type rangefinder is provided which calculates a distance value of each subject of two or more subjects at different distances. The rangefinder has a correlation calculation unit for calculating a correlation factor between images of a same subject focussed on a base photosensor and a reference photosensor, a second order differentiation unit for calculating second order differential values of correlation factors calculated by the correlation calculation unit, a second order differential value comparison unit for selecting a maximum second order differential value from the second order differential values calculated by the second order differentiation unit, a three-point interpolation unit for calculating an interpolation value through three-point interpolation using the maximum second order differential value and two second order differential values having the phases before and after the phase of the maximum second order differential value, and a distance value calculation unit for calculating a distance value from the phase of the maximum second order differential value and the interpolation value.
Abstract:
A charge-coupled device (CCD) delay line having a temperature compensation circuit capable of compensating for temperature variations for providing an accurate and consistent delay of an input signal. The temperature compensation circuit includes first and second registers for transferring charges, and a sample-and-hold circuit connected between outputs of each register and two inputs of a differential amplifier. The differential amplifier supplies a signal which corresponds to temperature variations to properly bias the input signal.
Abstract:
A peak level detecting apparatus for image sensors by which the maximum light value of a remote object is detected effectively utilizing the dynamic range of image sensors. The peak level detecting apparatus realizes a detection of the remote object patterns without any saturation in photoelectric devices by adjusting the exposure time with the detection of induced signal change in at least one of the photoelectric devices reaching the predetermined peak level, in order to improve the dynamic range and the signal to noise ratio.