摘要:
A process for forming a plurality of sliders for use in thermally-assisted recording (TAR) disk drives includes a wafer-level process for forming a plurality of aperture structures, and optionally abutting optical channels, on a wafer surface prior to cutting the wafer into individual sliders. The wafer has a generally planar surface arranged into a plurality of rectangularly-shaped regions. In each rectangular region a first metal layer is deposited on the wafer surface, followed by a layer of radiation-transmissive aperture material, which is then lithographically patterned to define the width of the aperture, the aperture width being parallel to the length of the rectangularly-shaped region. A second metal layer is deposited over the patterned layer of aperture material. The resulting structure is then lithographically patterned to define an aperture structure comprising aperture material surrounded by metal and having parallel radiation entrance and exit faces orthogonal to the wafer surface.
摘要:
A magnetic write head for data recording having a magnetic write pole with a stepped magnetic shell structure that defines a secondary flare point. The secondary flare point defined by the magnetic shell portion can be more tightly controlled with respect to its distance from the air bearing surface (ABS) of the write head than can a traditional flare point that is photolithographically on the main pole structure. This allows the effective flare point of the write head to be moved much closer to the ABS than would otherwise be possible using currently available tooling and photolithography techniques. The write head may also include a magnetic trailing shield that wraps around the main pole portion. The trailing shield can have a hack edge defining a trailing shield throat height that is either between the secondary flare point or coincident or behind the secondary flare point, depending on design requirements
摘要:
A heating device for a magnetic recording head includes first and second separating layers, the first separating layer having preferably a higher or equal thermal resistance than the first separating layer, and a heater formed between the first and second separating layers. A magnetic recording head for recording on magnetic medium includes a heating device which generates a heat spot on the magnetic medium which is larger than a magnetic track width, and/or heats a portion of the magnetic recording head which is on a leading edge side of a write gap in the magnetic recording head.
摘要:
A slider fabrication assembly and method for making the same are provided. A slider is formed on a substrate. A corrodible component of the slider is exposed to an environment in contact with the slider. A kerf region of the substrate is positioned adjacent to the slider. The kerf region is removable from the slider. A sacrificial anode is embedded in the kerf region and exposed to the environment. The sacrificial anode is electrically coupled to the corrodible component of the slider thereby forming an electrochemical cell. The sacrificial anode is less noble, i.e., more corrodible, than the corrodible slider component, and thus corrodes first. When the kerf region is removed, the corroded sacrificial anode is removed as well.
摘要:
An low profile inductive write head is provided to improve track definition and head efficiency and to reduce overcoat and pole tip protrusion and cracking caused by thermal expansion. A first insulation layer of an insulation stack enclosing the coil layer is formed of an non-magnetic inorganic insulator material such as aluminum oxide, silicon dioxide or titanium dioxide having a thickness of in the range of 0.2-0.3 microns. The thinner first insulation layer results in a significantly reduced slope of the insulation stack which decreases reflective notching during processing of the second pole tip to improve track definition. Improved thermal conduction properties of the inorganic insulator material improves heat sinking of the write coil reducing overcoat and pole tip protrusion and cracking at the pole tip/write gap layer interface.
摘要:
The electroplated components of a magnetic head of the present invention are fabricated utilizing a seed layer that is susceptible to reactive ion etch removal techniques. A preferred seed layer is comprised of tungsten or titanium. Following the electroplating of the components utilizing a fluorine species reactive ion etch process the seed layer is removed, and significantly, the fluorine RIE process creates a gaseous tungsten or titanium fluoride compound removal product. The problem of seed layer redeposition along the sides of the electroplated components is overcome because the gaseous fluoride compound is not redeposited. The present invention also includes an enhanced two part seed layer, where the lower part is tungsten, titanium or tantalum and the upper part is composed of the material that constitutes the component to be electroplated.
摘要:
A magneto-resistive read head having a “parasitic shield” in a data storage system provides an alternative path for currents associated with sparkovers, thus preventing such currents from damaging the read head. The parasitic shield is provided in close proximity to a conventional magnetic shield. The electrical potential of parasitic shield is held essentially equal to the electrical potential of the sensor element. If charges accumulate on the conventional shield, current will flow to the parasitic shield at a lower potential than would be required for current to flow between the conventional shield and the sensor element. Alternatively, conductive spark gap devices are electrically coupled to sensor element leads and to each magnetic shield. Each spark gap device is brought within very close proximity of the substrate to provide an alternative path for charge that builds up between the sensor element and the substrate to be discharged. The ends of the spark gaps that are brought into close proximity of the substrate are preferably configured with high electric field density inducing structures which reduce the voltage required to cause a sparkover between the spark gap device and the substrate.
摘要:
A method for making a merged thin film read/write head, where the first pole piece includes a pedestal or pole tip portion that extends up from the first pole piece layer, uses electroplating to form the gap so that the gap layer does not have to be removed later. After the first pole piece is deposited, the coil insulation structure is built over the first pole piece. Afterwards an electrically conductive seed layer of the same ferromagnetic material as the first pole piece is formed over the wafer to provide an electrically conductive path for subsequent electroplating. After the seed layer deposition, a photoresist pattern is then formed to define the shape of the second pole piece. Nonmagnetic nickel-phosphorous is then electroplated onto the seed layer in the region not covered by the photoresist pattern to form the gap layer. The second ferromagnetic layer is then electroplated onto the gap layer to define the shape of the second pole piece. The thickness of the second pole piece layer is deliberately made thicker than the desired final thickness because the second pole piece layer is used as a mask for subsequent ion beam milling to form the notched pole tip element of the first pole piece. The photoresist is removed and ion beam milling performed to remove the seed layer and a portion of the first pole piece layer to define the pedestal pole tip element of the first pole piece. The ion beam milling does not have to remove the gap layer because the electroplated gap has been defined by the photoresist pattern to have the desired trackwidth.
摘要:
A method is described for making a merged thin film read/write head where a common layer serves as both a magnetic shield for the magentoresistive read element and the first pole piece for the inductive write element, and where the first pole piece thus includes a pedestal pole tip portion that extends up from the first pole piece layer. During fabrication a nonmagnetic spacer layer is deposited over the second pole tip and the gap layer, and then reactive ion etching (RIE) removes the spacer layer from the top of the second pole tip and the gap layer not beneath the second pole piece, but leaves the spacer layer on the sidewalls of the second pole tip. The ion bombardment of the RIE process is perpendicular to the gap layer and is continued after removal of the spacer layer to also remove the gap layer in the region not beneath the second pole piece so that the first pole piece layer is exposed. The RIE uses a gas that is more reactive with the gap material than the material of the second pole tip so that the top surface of the second pole tip is not substantially removed during etching of the gap layer. Next, ion milling removes the material from the layer of the first pole piece to form a first pedestal pole tip beneath the gap. Material ejected from the first pole piece layer during ion milling that gets redeposited on the second pole piece is prevented from contacting the sidewalls of the second pole tip because of the spacer layer.
摘要:
The present invention provides a novel high magnetic moment material for the pole pieces as well as a metal-in-gap configuration for the pole tips of either an inductive magnetic head only or the inductive portion of a MR head. The novel material is Ni.sub.45 Fe.sub.55. In the MIG configuration each pole piece of the inductive head or the inductive head portion of a MR head has a combination of layers, each combination of layers including a first layer of high magnetic moment material Ni.sub.45 Fe.sub.55 adjacent to a transducing gap and a second layer of low magnetic moment material such as Permalloy (Ni.sub.81 Fe.sub.19) further away from the gap. Since both layers are made of NiFe all the desirable properties of this type of material can be employed as well as simplifying its construction with similar plating baths. The saturation of the first layers is 50 to 60 percent higher than the saturation of the second layers. The present invention avoids effects of magnetostriction in spite of the high magnetic moment of the first layers. By appropriately selecting the thickness ratio of the second layer with respect to the first layer the magnetostriction of the laminated structure can be reduced substantially to zero. When this thickness ratio is in the order of five to nine the magnetostriction is reduced to, or slightly below, zero. If the inductive head is employed for write functions only then the second pole tip or both pole tips can be constructed of the high moment Ni.sub.45 Fe.sub.55 material without any thickness ratio or MIG configuration constraints.