Abstract:
A system comprises a risk analysis module and a worsening heart failure (WHF) detection module. The risk analysis module measures at least one first physiological parameter of a subject using a physiological sensor of an ambulatory medical device, and determines a heart failure (HF) risk score for the subject according to the at least one measured first physiological parameter. The HF risk score indicates susceptibility of the subject to experiencing a HF event. The WHF detection module measures at least one second physiological parameter of the subject using the same or different physiological sensor, and generates an indication of prediction that the subject will experience a WHF event when the at least one second physiological parameter satisfies a WHF detection algorithm. The risk analysis module adjusts generation of the indication by the WHF detection algorithm according to the determined HF risk score.
Abstract:
A fluidic cartridge for biochemical assays includes a cartridge body defining a first droplet region and a second droplet region with a droplet restraining barrier therebetween. The droplet restraining barrier has a gap between the first and the second droplet regions. The fluidic cartridge also includes a first droplet dispensed in the first droplet region. The first droplet includes a plurality of magnetic particles dispersed therein. The fluidic cartridge also includes a second droplet disposed in the second droplet region. The plurality of magnetic particles are sufficiently small to be drawn through the gap between the first and second droplet regions when compelled by an applied magnetic field, and the first droplet is restrained by the restraining barrier while the plurality of magnetic particles are drawn through the gap. A biochemical assay system includes a stage adapted to receive a fluidic cartridge, and a magnetic control assembly that includes a magnet. The magnet of the magnetic control assembly is movable to direct motion of magnetic particles contained within the fluidic cartridge.
Abstract:
The health state of a subject is automatically evaluated or predicted using at least one implantable device. In varying examples, the health state is determined by sensing or receiving information about at least one physiological process having a circadian rhythm whose presence, absence, or baseline change is associated with impending disease, and comparing such rhythm to baseline circadian rhythm prediction criteria. Other chronobiological rhythms beside circadian may also be used. The baseline prediction criteria may be derived using one or more past physiological process observation of the subject or population of subjects in a non-disease health state. The prediction processing may be performed by the at least one implantable device or by an external device in communication with the implantable device. Systems and methods for invoking a therapy in response to the health state, such as to prevent or minimize the consequences of predicted impending heart failure, are also discussed.
Abstract:
Systems and methods for performing data anomaly detection and/or removal are usable to accurately assess baseline power consumption. According to one embodiment of the invention, a system can be provided. The system can be operable to receive energy consumption data of a location; select, based at least in part on a collection period of the energy consumption data, an algorithm for detecting anomalies in the energy consumption data; perform the algorithm on the energy consumption data to detect the anomalies in the energy consumption data; and determine an energy consumption baseline for the location based at least in part on a result of the algorithm.
Abstract:
A pacing system delivers cardiac protection pacing to protect the heart from injuries associated with ischemic events. The pacing system detects an ischemic event and, in response, initiates one or more cardiac protection pacing sequences each including alternative pacing and non-pacing periods. In one embodiment, the pacing system initiates cardiac protection pacing sequences including at least one postconditioning sequence to protect the heart from a detected ischemic event and a plurality prophylactic preconditioning sequences to protect the heart from probable future ischemic events.
Abstract:
A driving circuit for regulating current in a light source using a tracking component. The tracking component detects the voltage difference between an input node in the input stage and an output node in the output stage. The input stage is connected to a current source and includes an input transistor. The output stage is connected to the light source and includes an output transistor. The tracking component generates an output that controls the input and output transistors based on the voltage difference between the input node and the output node so that the voltage at the input node tracks the voltage at the output node. By using the tracking component, the LED driver can achieve accurate current control through one output transistor instead of cascaded transistors, resulting in lower output operating voltage and reduced power dissipation of the LED driver. Further, the tracking component is intermittently operated or shared across different channels to reduce energy consumption of the LED driver.
Abstract:
Automated insurance policy form generation and completion includes electronically receiving one or more forms and receiving an indication that a particular form is an overflow form for a particular base form. The relationship between the overflow form and base form is recorded based on the received indication and the fields on the base form and overflow form are tagged according to a naming convention. The number of overflow forms to use is determined based on an amount of received data and by using the naming convention to determine a number of available fields on the base form and overflow forms.
Abstract:
A system and method for automatically analyzing heart failure in a patient, including collecting physiological data from a patient using at least a first sensor and a second sensor to collect two or more sensor measurements, and calculating a first composite value based on at least a first sensor measurement wherein the first composite value is an indication of a likelihood that the patient's heart failure status has changed. If the first composite value is outside of a first specified range, then a second composite value is calculated based on at least a second sensor measurement, wherein the second composite value is an indication of a likelihood that the patient's heart failure status has changed. If the second composite value is outside of a second specified range, then an alert of change in heart failure status is generated.
Abstract:
A system comprising an implantable medical device (IMD) includes an implantable heart sound sensor to produce an electrical signal representative of at least one heart sound. The heart sound is associated with mechanical activity of a patient's heart. Additionally, the IMD includes a heart sound sensor interface circuit coupled to the heart sound sensor to produce a heart sound signal, and a signal analyzer circuit coupled to the heart sound sensor interface circuit. The signal analyzer circuit measures a baseline heart sound signal, and deems that an ischemic event has occurred using, among other things, a measured subsequent change in the heart sound signal from the established baseline heart sound signal.