摘要:
A floating gate memory cell's channel region (104) is at least partially located in a fin-like protrusion (110P) of a semiconductor substrate. The floating gate's top surface may come down along at least two sides of the protrusion to a level below the top (110P-T) of the protrusion. The control gate's bottom surface may also comes down to a level below the top of the protrusion. The floating gate's bottom surface may comes down to a level below the top of the protrusion by at least 50% of the protrusion's height. The dielectric (120) separating the floating gate from the protrusion can be at least as thick at the top of the protrusion as at a level (L2) which is below the top of the protrusion by at least 50% of the protrusion's height. A very narrow fin or other narrow feature in memory and non-memory integrated circuits can be formed by providing a first layer (320) and then forming spacers (330) from a second layer without photolithography on sidewalls of features made from the first layer. The narrow fin or other feature are then formed without further photolithography in areas between the adjacent spacers. More particularly, a third layer (340) is formed in these areas, and the first layer and the spacers are removed selectively to the third layer. The third layer is used as a mask to form the narrow features.
摘要:
The present disclosure provides a memory device having a cell stack and a select gate formed adjacent to the cell stack. The cell stack includes a tunneling dielectric layer, a charge storage layer, a blocking dielectric layer, a tantalum-nitride layer, and a control gate layer. When a positive bias is applied to the control gate and the select gate, negative charges are injected from a channel region of a substrate through the tunneling dielectric layer and into the charge storage layer to thereby store the negative charges in the charge storage layer. When a negative bias is applied to the control gate, negative charges are tunneled from the charge storage layer to the channel region of the substrate through the tunneling dielectric layer.
摘要:
A memory cell (110) has a plurality of floating gates (120L, 120R). The channel region (170) comprises a plurality of sub-regions (220L, 220R) adjacent to the respective floating gates, and a connection region (210) between the floating gates. The connection region has the same conductivity type as the source/drain regions (160) to increase the channel conductivity. Therefore, the floating gates can be brought closer together even though the inter-gate dielectric (144) becomes thick between the floating gates, weakening the control gate's (104) electrical field in the channel.
摘要:
A method of fabricating a semiconductor device having a triple LDD (lateral diffused dopants) structure is disclosed. This fabrication method requires a single implant process, leading to reduction in fabrication costs and fabrication time. Moreover, this fabrication method increases the surface area of the gate structure of the semiconductor device that is available for silicide to be formed, leading to lower gate resistance.
摘要:
A method of erasing bits in a multi-level cell flash memory array is described. The method includes applying over-erase verification after each erase pulse. If cells verify as over-erased, a ramped over-erase correction pulse is applied. The voltage of each over-erase correction pulse is incrementally greater than the previous pulse, until all bits in all cells pass the over-erase verification. In this way, the widths of the threshold voltage distributions of the erased bits are kept to a minimum.
摘要:
An exemplary sensing circuit for sensing the current drawn by a target memory cell comprises a first transistor connected across a first node and a second node, a load connected across the second node and a third node, and a voltage boosting circuit coupled to a supply voltage, wherein the voltage boosting circuit supplies a voltage at the third node which is greater than the supply voltage.
摘要:
According to one exemplary embodiment, a method for fabricating a floating gate memory array comprises a step of removing a dielectric material from an isolation region situated in a substrate to expose a trench, where the trench is situated between a first source region and a second source region, where the trench defines sidewalls in the substrate. The method further comprises implanting an N type dopant in the first source region, the second source region, and the sidewalls of the trench, where the N type dopant forms an N+ type region. The method further comprises implanting a P type dopant in the first source region, the second source region, and the sidewalls of the trench, where the P type dopant forms a P type region, and where the P type region is situated underneath the N+ type region.
摘要:
In the present method of undertaking a self aligned source etch of a semiconductor structure, a substrate has oxide thereon. First and second adjacent stacked gate structures are provided on the substrate. Oxide spacers are provided on the respective first and second adjacent sides of the first and second gate stacked structures, and polysilicon spacers are provided on the respective oxide spacers. A self aligned source etch is undertaken using the gate structures, oxide spacers, and polysilicon spacers as a mask. The polysilicon spacers are then removed, and metal, for example cobalt, is provided on the substrate, using the oxide spacers as a mask. A silicidation step is undertaken to form metal silicide common source line on the substrate.
摘要:
A method of fabricating a semiconductor device having a triple LDD (lateral diffused dopants) structure is disclosed. This fabrication method requires a single implant process, leading to reduction in fabrication costs and fabrication time. Moreover, this fabrication method increases the surface area of the gate structure of the semiconductor device that is available for silicide to be formed, leading to lower gate resistance.
摘要:
The present invention is a method for fabricating a flash memory device. In one embodiment, a gate structure comprising a tunnel oxide layer, a floating gate layer, an oxide layer, and a control gate layer is fabricated on a semiconductor substrate. A rapid thermal oxidation (RTO) process is then performed to repair the tunnel oxide layer.