Abstract:
A micropump with a deformable membrane, including: a first chamber, one wall of which includes a first deformable membrane portion and an actuator of the first membrane portion; a second chamber including a second deformable membrane portion and a third chamber, including a third deformable membrane portion, the second chamber and the third chamber being connected together through a first channel, at least one of the second and third chambers being connected through a second channel to the first chamber; each of the second chamber and third chamber including a mechanism forming a detection gauge, but not including an activation mechanism.
Abstract:
A device for addressing an electrode array of 2n lines of an electro-fluidic device, each line having N electrodes (n≦N). The device includes, on each line, n selection electrodes, all of the line selection electrodes being connected to 2n line selection conductors, 2n−1 line selection electrodes of 2n−1 lines being connected to each line selection conductor, and selection devices for selecting one or more line selection conductors.
Abstract:
The invention relates to a microfluidic device for making a liquid/liquid or gas biphasic system using a first liquid or a gas and a second liquid, non-miscible with each other, the device having a first hydrophobic surface for the second liquid, the first liquid forming a layer (6) on said first hydrophobic surface. The device comprises means for introducing a drop (7) of the second liquid into the layer of first liquid or gas and in contact with said first hydrophobic surface, and means for displacing the drop on said first hydrophobic surface along a determined path, the device having on the path of the drop, at least one wetting defect causing, upon passing of the drop over this defect, failure of the triple line of contact of the drop on the first hydrophobic surface and inclusion of first liquid (8) or gas into the drop.The invention also relates to the associated method.
Abstract:
A liquid dispensing device includes first and second substrates, with the first substrate including an opening for introduction of a fluid, and the second substrate including a multiplicity of electrodes. The device includes a transfer electrode, located at least partially opposite to the opening, at least two drop-forming electrodes, and a reservoir electrode, located between the transfer electrode and the drop-forming electrodes, and with an area that is at least equal to three times the area of each drop-forming electrode.
Abstract:
A device for extracting a liquid phase from a suspension, the device being characterized in that it comprises: a main duct for conveying a flow of said suspension, the duct being of a length that is sufficient to enable a layer of said suspension to develop that is depleted in solid phase; flow disturbance means for disturbing the flow of said suspension, said means being provided in the main duct and being adapted to cause at least one recirculation vortex to form so as to increase locally the thickness of said depleted layer; and liquid extraction means disposed in a region of the device where said suspension is enriched in liquid phase as a result of said recirculation vortex.A method of extracting a liquid phase from a suspension, the method comprising injecting said suspension into such a device at a flow rate suitable for causing at least one recirculation vortex to be formed, and extracting a fraction of said suspension that is enriched in liquid as a result of said vortex.
Abstract:
A device for reversibly displacing at least one volume of liquid under the effect of an electrical control, including first electrically conductive device, second electrically conductive device, and a device for inducing a reversible displacement of a volume of liquid, from the first to the second electrically conductive devices, without contact with the conductive device during the displacement.
Abstract:
The invention concerns a device for air/water extraction by semi-humid electrostatic collection, comprising a chamber (7) containing a discharge electrode (1) for generating an ion flow from an ionized gas accumulation surrounding the discharge electrode (1) and a counter-electrode (2), an inlet (3) for mixing air and aerosol to be extracted which contains liquid or solid particles, a steam supply tube (8) and an outlet (4) for cleansed air. The invention is characterized in that the device enables stream to be introduced through said steam supply tube (8) in the gap between the discharge electrode (1) and the counter-electrode (2) so as to form a steam sheath (10) enclosing the discharge electrode over its entire length, such that the treated air is not steam-saturated.
Abstract:
The invention concerns the performing, in continuous flow, of a biological, chemical or biochemical protocol on substances to be analysed, comprising several steps which consists in: in causing a mobile analysis support (11) comprising means (12) for receiving substances to be analysed and reagents to move past; implementing the steps of the protocol on the substances as the mobile analysis support (11) moves past.
Abstract:
A process for making microswitches or microvalves, composed of a substrate and used for shifting between a first state of functioning and a second state of functioning by means of a bimetal-effect thermal sensor. The sensor includes a deformable element attached, at opposite ends, to the substrate so that there is a natural deflection without stress with respect to a surface of the substrate opposite it, this natural deflection determining the first state of functioning, the second state of functioning being caused by the thermal sensor which, under the influence of temperature variation, induces a deformation of the deformable element which diminishes the deflection by subjecting it to a compressive force which shifts it in a direction opposite to its natural deflection by buckling.
Abstract:
The invention relates to a method for producing at least one buried micro-channel on a substrate consisting in applying and moving an optic radiation on a stacking in a predetermined direction. The stacking successively comprises a deformable absorbent thin layer and a thin-layer formed by a material able to locally release gas due to the action of a heating caused by the optic radiation. Local application of the optic radiation on the stacking forms a gas bubble, by local heating of the thin layer able to release gas, deforming the absorbent thin layer. Then the movement of the optic radiation extends the deformation of the absorbent thin layer in the direction of movement of the optic radiation and forms the buried micro-channel. The invention also relates to a micro-device for transportation of fluid and to a micro fuel-cell.