Abstract:
A composition comprising FCC catalyst particles and additive particles suitable for the reduction of NOx emissions from a FCC regenerator, said additive particles comprising a Mg and Al-containing anionic clay or solid solution, a rare earth metal oxide, alumina and/or silica-alumina, and Y-type zeolite. The invention further relates to a process for preparing such a composition and its use for reducing NOx emissions.
Abstract:
The invention relates to a composition comprising anionic clay and rare earth metal hydroxy carbonate. This composition can suitably be used in FCC for the reduction of NOx and/or SOx emissions, the reduction of the S and/or N-content in fuels, and as a metal trap.The composition can be prepared by precipitating a divalent metal salt, a trivalent metal salt, and a rare earth metal salt to form a precipitate, calcining the precipitate at 200-800° C., and rehydrating the precipitate in the presence of a carbonate source to form a composition comprising anionic clay and a rare earth metal hydroxy carbonate.
Abstract:
Catalyst compositions for use in oxychlorination reactions, in particular the oxychlorination of ethylene, are disclosed. The catalyst compositions are in the form of particles suitable for use in fluid bed reactors, in particular baffled fluid bed reactors.Compared to prior art oxychlorination catalyst materials the catalyst particles disclosed herein have a reduced tendency to stick together under oxychlorination reaction conditions.Preferred catalyst materials comprise from 5.5 wt % to 14 wt % Cu. They may further comprise an earth alkali metal, such as Mg, and/or a rare earth metal. Preferred compositions contain less than 1 wt % of an alkali metal, which preferably is K
Abstract:
Processes for maximizing low aromatics LCO yield and/or propylene yield in fluid catalytic cracking are disclosed. The processes employ catalytic compositions that comprise a predominantly basic material and little to no large pore zeolite.
Abstract:
A process for converting molybdenum technical oxide into a purified molybdenum trioxide product is provided, generally comprising the steps of: combining molybdenum technical oxide with an oxidizing agent and a leaching agent in a reactor under suitable conditions to effectuate the oxidation of residual MoS2, MoO2 and other oxidizable molybdenum oxide species to MoO3, as well as the leaching of any metal oxide impurities; precipitating the MoO3 species in a suitable crystal form; filtering and drying the crystallized MoO3 product; and recovering and recycling any solubilized molybdenum.
Abstract translation:提供了将钼工业氧化物转化成纯化的三氧化钼产物的方法,通常包括以下步骤:在合适的条件下,在反应器中将钼工业氧化物与氧化剂和浸出剂结合,以实现残留的MoS 2 O,MoO 2和其他可氧化的氧化钼物质转化成MoO 3,以及任何金属氧化物杂质的浸出; 以适当的晶体形式沉淀MoO 3 N 3物质; 过滤并干燥结晶的MoO 3 N 3产物; 并回收和再循环任何溶解的钼。
Abstract:
Metal-containing composition and use thereof in catalytic reactions, which metal-containing composition is obtainable by contacting a metal hydroxy salt with a solution comprising one or more pH-dependent anions selected from the group consisting of pH-dependent boron-containing anions, vanadium-containing anions, tungsten-containing anions, molybdenum-containing anions, iron-containing anions, niobium-containing anions, tantalum-containing anions, aluminium-containing anions, and gallium-containing anions.
Abstract:
The present invention relates to a process for the preparation of catalyst particles with a particle diameter in the range 20–2000 microns involving the steps of agitating at least two dry catalyst ingredients, spraying a liquid binding agent on the catalyst ingredients while continuing the agitation, and isolating formed catalyst particles with the desired particle diameter and comprising the catalyst ingredients. In contrast to the conventional way of preparing such particles, spray-drying, the present process allows the formation of small particles from slurries with a high solids content. Hence, smaller amounts of liquid have to be evaporated, which makes the process energy efficient.
Abstract:
A process for preparing a catalyst is disclosed. The process generally comprises the steps of: (a) preparing a slurry comprising clay, zeolite, a sodium-free silica source, quasi-crystalline boehmite, and micro-crystalline boehmite, provided that the slurry does not comprise peptized quasi-crystalline boehmite; (b) adding a monovalent acid to the slurry; (c) adjusting the pH of the slurry to a value above about 3, and (d) shaping the slurry to form particles. This process results in attrition resistant catalysts with a good accessibility.
Abstract:
Process for the preparation of a catalyst comprising the steps of (a) preparing a slurry comprising clay, zeolite, a sodium-free silica source, quasi-crystalline boehmite, and micro-crystalline boehmite, provided that the slurry does not comprise peptized quasi-crystalline boehmite, (b) adding a monovalent acid to the slurry, (c) adjusting the pH of the slurry to a value above 3, and (d) shaping the slurry to form particles. This process results in attrition resistant catalysts with a good accessibility.
Abstract:
Process for the preparation of a catalyst comprising the steps of (a) preparing a slurry comprising clay, zeolite, a sodium-free silica source, quasi-crystalline boehmite, and micro-crystalline boehmite, provided that the slurry does not comprise peptised quasi-crystalline boehmite, (b) adding a monovalent acid to the slurry, (c) adjusting the pH of the slurry to a value above 3, and (d) shaping the slurry to form particles. This process results in attrition resistant catalysts with a good accessibility.