Abstract:
An emulator software in a semiconductor test system for emulating hardware in the semiconductor test system as well as a semiconductor device to be tested without need to use an actual test system hardware. The emulator software includes an emulator unit which emulates a function of each hardware unit of the test system, a device emulator which emulates a function of a semiconductor device to be tested, a data collecting part for acquiring data from the emulator unit necessary for carrying out a test program, and a device test emulator which generates a test signal to be applied to the device emulator based on the acquired data and compares the resultant signal from the device emulator with the expected data and stores the comparison result therein. In the other aspect, the emulator is combined with the operating system of the semiconductor test system which is capable of easily modifying the software when there is a change or replacement of the hardware of the test system so that the transmission of the control data for the hardware and its operation or the development of the test program can be carried out without using the hardware of the test system.
Abstract:
A memory fail analysis device for a semiconductor test system is attained in which fail data of a plurality of bits is read out in parallel to count the overall fail bits in a short period of time. In a fail bit counting device in a fail memory for the semiconductor memory test system, a fail memory block 358 is provided which is recognized as a single memory when measuring the MUT while divided into M blocks to read the stored data in M bits parallel at the same time when counting the number of fail bits. Further, a fail counter 360 is provided which receives the M bit data and encodes the number of either high or low logic levels in the data into binary code data and counts the binary code data to accumulate the counted number.
Abstract:
The present invention provides a simple circuit for measuring the delay time between a driver (DR) and a device under test (DUT), and the (DUT) and a comparator (CP) during the connection state of an I/O test where separate driver and comparator paths are used. In the connection circuit of the I/O test using two I/O common pins to connect to one of the pins of the DUT, a terminal pin of a DUT socket corresponding to the DUT pin is grounded. Furthermore, in the connection circuit of the I/O test using a DR-only pin and an I/O common pin to connect to the DUT pin, the terminal pin of the DUT socket is grounded and a standard comparator is employed.
Abstract:
An automatic test handler system for automatically supplying IC devices to be tested to an IC tester and sorting the tested IC devices based on the test results. The system includes a testing machine for testing the IC devices by contacting the IC devices with test contactors. Test signals are provided from the IC tester and the resulting signals from the IC devices are received. The testing machine is installed in a test room in which dust, temperature and humidity are controlled in a high degree. A sorting machine is installed outside of the test room for sorting the IC devices that have been tested based on the test results. The sorting machine has a plurality of sort stations for receiving the IC devices based on categories defined in the test results. Tray cassettes hold a plurality of IC trays containing the IC devices, and both the tray cassettes and IC trays are provided with identification numbers. The trays are horizontally transferred on the testing machine and the sorting machine, and a data communication network connected between the testing machine and the sorting machine transmits the test results and position information of the IC devices in the IC trays.
Abstract:
An improved local oscillator for use in a digital step sweep is capable of minimizing dynamic spurious which is an inverse of the unit step time T.sub.step. The local oscillator includes a random clock delay 12 which provides a random clock 12.sub.rndclk to the DDS 40 to modify a time length of the unit step time T.sub.step for sweeping the local oscillator to be random.
Abstract:
An address pattern generator for testing a semiconductor device, particularly, a synchronous DRAM is disclosed. The address pattern generator can switch an interleave mode and a sequential mode of address generation for a semiconductor device under test during a test process in real time and generates column addresses for the device under test by a Y address generation section alone. The address generator includes an address selector that selects and outputs from a lower Y address signal, Z address signal, and an operation mode control signal is arranged, a conversion memory that outputs certain conversion table contents is arranged, a multiplexer that selects and outputs an output from the conversion memory and the lower Y address signal in accordance with the burst length control signal. In another aspect, the address pattern generator includes a counter that loads the lower address signal from the Y address generator section for the sequential mode and loads a fixed value for the interleave mode, an exclusive OR gate that provides an output signal of the counter to an input terminal and the lower address signal from the Y address generation section to the other input terminal, and a multiplexer that selects the output signal of the counter for the sequential mode and the output signal of the exclusive OR gate for the interleave mode.
Abstract:
The present invention is to provide an IC fault location tracing apparatus with which a user having any knowledge of the DUT design is easily able to identify the IC fault location in a short period of time. The IC fault location tracing apparatus of the present invention includes a control device instructing visual field data to the charged particle ray tester and capturing different images of said electric potential contrast images from the charged particle ray tester, wherein said control device further includes: a fault-suspected layout pattern/net recognition means; a n output gate recognition means for fault-suspected layout patterns; an input net polygon recognition means corresponding to input net of the output gate of the fault-suspected layout pattern; a visual field determination means determining next visual field data for tracing fault location; a layout (visual field) display means instructing next layout (visual field) data to the charged particle ray tester; a memory device storing net layout corresponding information and device-layout corresponding information.
Abstract:
A semiconductor test system having a test head connection apparatus for connecting and disconnecting a test head of the test system with a wafer prober or a test handler includes a housing formed outside of the semiconductor test system wherein the housing is integral with a body of the test system, a pair of arms provide on the housing for holding the test head wherein the test head rotates about 180 degrees in the arms so that a performance board on the test head faces with a corresponding member on the wafer prober or the test handler, at least one rail built on a floor in a direction which accurately positioning the test head right over the wafer prober or the test handler, a guide mechanism provided on the housing to guide an up-down movement of the arms, a plurality of free casters provided at the bottom of the housing to transfer the test system and the test head toward the wafer prober or the test handler along the rail, and a balancing mechanism for offsetting the weight of the test head so that the up-down movement of the arms holding the test head is controlled with substantially less power.
Abstract:
A test pattern transfer apparatus is to improve overall throughput of a semiconductor test system which has an engineering work station for functioning as a host computer, a test controller for controlling an operation of the semiconductor test system and a pattern memory for generating test patterns transferred from a hard disk of the engineering work station. The test pattern transfer apparatus simplifies the pathways for transferring the test patterns so as to reduce the time required for the pattern transfer by directly transferring the test pattern from the work station to the pattern memory without passing through the test controller. The test pattern transfer apparatus includes an interface controller whereby the test pattern from the engineering work station is either directly transferred to the pattern memory or indirectly transferred to the pattern memory through the test controller.
Abstract:
An ultra high accuracy voltage measurement system utilizes a Josephson junction voltage generator whose voltage is controlled by a high precision frequency. The voltage measurement system to measure an input DC voltage incudes: a microwave oscillator which generates a microwave signal whose frequency is variable by a voltage applied thereto; an atomic frequency standard which generates a standard frequency signal with extremely high accuracy and stability; a frequency synthesizer which synthesizes a frequency signal based on the atomic frequency standard; a phase lock loop for synchronizing the microwave signal with the frequency signal from the frequency synthesizer; a Josephson junction voltage generator which is soaked with liquid helium and generates a standard voltage determined by the frequency and a power level of the microwave signal; a bias circuit for supplying a bias current to the Josephson junction voltage generator; a switch group for alternately changing polarities of the input voltage and the standard voltage; a difference detector for detecting a voltage difference between the input voltage and the standard voltage; a feedback circuit to control the frequency of the microwave signal through the phase lock loop so that the voltage difference is canceled; and a system controller to control an overall operation of the voltage measurement system.