Abstract:
An expandable interbody fusion device includes superior and inferior plates that are configured to receive a sequentially inserted stack of expansion members or wafers. The superior and inferior plates include features that at least initially interlock the two plates until the superior plate is dislodged by pressure from the growing wafer stack. The wafers include features on their top and bottom surfaces that interlock the wafers in multiple degrees of freedom so that the wafer stack is not disrupted when the fusion device is fully expanded. Each wafer also includes features that interlock with the inferior plate until the wafer id dislodged by sequential introduction of another wafer.
Abstract:
An implant has a first contact surface to contact a first vertebral body endplate and a second contact surface to contact a second vertebral body endplate adjacent the first vertebral body. The implant is deployable, when positioned within an intradiscal space between the first and second vertebral bodies, from a first non-expanded condition where the first contact surface has a first effective footprint area A1 to a second expanded condition where the first contact surface has a second effective footprint area A2. The ratio A2/A1 is at least 1.05.
Abstract:
A medical device for implantation in a hip joint of a patient is provided. The medical device comprises a first and second piece and a releasing member adapted to, in a first state hold the first piece attached to the second piece, and in a second state release the first piece from the second piece. The releasing member is adapted to change from the first state to the second state when a pre-determined strain is placed on the releasing member.
Abstract:
The present invention relates to an expandable prosthetic implant device for engagement between vertebrae generally comprising an inner member, outer member, and gear member positioned coaxial with respect to each other such that the inner and outer members are moveable relative to each other along an axis. The gear member is axially fixed to the outer member and freely rotatable with respect to the outer member and the gear member threadedly engages a threaded portion of the inner member to translate inner member along the axis. The implant is configured to engage the vertebrae in a predetermined alignment and the gear member includes gear teeth exposed to the exterior and configured to be accessible by a tool member at a plurality of angular positions around the perimeter of the implant device.
Abstract:
A bone fusion device provides stability to bones during a bone fusion period. The bones include, for example, the vertebrae of a spinal column. The bone fusion device comprises one or more extendable tabs attached to the bone fusion device by associated rotating means. The bone fusion device is preferably inserted by using an arthroscopic surgical procedure. During arthroscopic insertion of the device, the tabs are pre-configured for compactness. In this compact configuration, the tabs are preferably deposed along and/or within an exterior surface of the bone fusion device. After the bone fusion device has been positioned between the bones, one or more tab(s) are extended. In the preferred embodiment, the position of each tab is related to a positioning element and extending blocks. Typically, the tabs advantageously position and brace the bone fusion device in the confined space between the bones until the bones have fused.
Abstract:
An implant for performing interbody fusion within a human spine, inserters for such an implant, and associated methodology. The implant is preferably formed in situ from at least two separate but lockable members (a base member and a closure member). The base member may be implanted into an interbody space first, after which the end plates may be finally prepared and the base member packed with fusion promoting substances before engaging and locking the closure member. The closure member provides structural support for the adjacent vertebral bodies (along with the base member) and may be selected after implantation of the base member having a specific length, width, height, taper, etc. . . . to ensure an optimal sizing of the implant for desired restoration of disc height, coronal taper, sagittal taper, etc. . . . .
Abstract:
The present invention provides an expandable fusion device capable of being installed inside an intervertebral disc space to maintain normal disc spacing and restore spinal stability, thereby facilitating an intervertebral fusion. In one embodiment, the fusion device includes a body portion, a first endplate, and a second endplate, the first and second endplates capable of being moved in a direction away from the body portion into an expanded configuration or capable of being moved towards the body portion into an unexpanded configuration. The fusion device is capable of being deployed and installed in both configurations.
Abstract:
A spinal implant includes a first member having a wall that defines an axial cavity. A second member extends between a first end and a second end and defines a longitudinal axis. The second member is configured for disposal with the axial cavity and translation relative to the first member. A third member has an outer surface engageable with tissue and an inner surface disposed to dynamically engage the first end in response to the engagement of the outer surface with the tissue. Systems and methods are disclosed.
Abstract:
Intervertebral implants for implanting into an intervertebral space are provided. The implants can comprise one or more layers that are operably attached to one another. An implant can comprise a first layer having a first mating surface that mates with a second mating surface of a second layer. The first mating surface and the second mating surface can have features that allow them to complement each other. The implants can include one or more bore holes for receiving a fixation member. The bore holes can be horizontal, vertical or diagonal. In some cases, the bore holes will be blind bore holes.
Abstract:
An intervertebral implant for mutual situating of adjacent vertebrae includes a cover and a driving mechanism mounted in the cover. The cover presents a manipulative hole and a seat. The driving mechanism is located in the seat and includes a rotational element with anchoring to engage a vertebra. The implant includes a connecting element located within the diameter of the manipulative hole and operable to be engaged by a driving tool.