Abstract:
An immobilization method, an apparatus, and a manufacturing method of a microstructure are provided, where the method including the electrospray step by which a solution containing at least one objective substance is supplied to a capillary; and immobilization step by which the objective substance in the solution atomized in the electrospray step is immobilized on an object, which is to be coated and has an arbitrary shape, in a dried state by an electrostatic force while retaining functionality and/or activity of the objective substance, resulting in a thickness on the order of nanometers.
Abstract:
An apparatus and method for improved control of low viscosity fluid flow during electrohydrodynamic spray deposition of the fluid to coat small targets, such as medical devices like stents. The apparatus includes a target holder which applies a first electrical potential to a target, a coating fluid transporter such as a wick, a siphon tube or a siphon tube with a wick therein along which the coating fluid flows from a reservoir to a dispensing end of the transporter, and an electrode which applied a second electrical potential to the coating fluid sufficient to cause the coating fluid to be attracted from the dispensing end of the transporter toward the target. This provides a target coating apparatus with highly self-regulating coating fluid flow characteristics despite the low viscosity of the coating fluid, while producing highly consistent and uniform target coatings.
Abstract:
A nano-sized structure can be accurately patterned while minimizing the generation of a noise pattern by a simple method of electrospraying a nanoparticle dispersion.
Abstract:
A central controller for a powder coating system has a single processor connected to a memory, a gun controller input/output device and gun control logic for controlling a characteristic of a spray gun. An air flow controller input/output device and air flow control logic for controlling a characteristic of a pump providing air flow may also be included. A process input/output device for electrically communicating with a process input or a process output may also be included. Part identification and tracking logic, gun triggering logic, gun movement logic, booth control logic, part profiling logic and system monitoring and logging logic may also be included.
Abstract:
A coating material dispensing device includes a port adapted to be coupled to a source of coating material, an actuator for controlling a flow of compressed gas through the dispensing device, and a valve coupled to the actuator to be controlled by the actuator. The valve includes a valve housing, a valve closure member, and a valve seat. The valve closure member is movable in the housing under the control of the actuator between a closed position against the valve seat and an open position away from the valve seat. An inlet port is provided into the housing. The inlet port is oriented on a first side of the valve seat. The inlet port is adapted to be coupled to a source of the compressed gas. An outlet port is provided on the second side of the valve seat. The valve closure member includes a first surface which faces generally in a first direction of movement of the valve closure member away from the valve seat and a second surface which faces generally in a second direction of movement of the valve closure member toward the valve seat.
Abstract:
Spraying apparatus and methods that employ multiple nozzle structures for producing multiple sprays of particles, e.g., nanoparticles, for various applications, e.g., pharmaceuticals, are provided. For example, an electrospray dispensing device may include a plurality of nozzle structures, wherein each nozzle structure is separated from adjacent nozzle structures by an internozzle distance. Sprays of particles are established from the nozzle structures by creating a nonuniform electrical field between the nozzle structures and an electrode electrically isolated therefrom.
Abstract:
An electrospraying apparatus and/or method is used to coat particles. For example, a flow including at least one liquid suspension may be provided through at least one opening at a spray dispenser end. The flow includes at least particles and a coating material. A spray of microdroplets suspending at least the particles is established forward of the spray dispenser end by creating a nonuniform electrical field between the spray dispenser end and an electrode electrically isolated therefrom. The particles are coated with at least a portion of the coating material as the microdroplet evaporates. For example, the suspension may include biological material particles.
Abstract:
An anti-electrostatic discharge spray gun apparatus and method for preventing crystallization of particles formed as a result of electrostatic discharge from forming on a spray gun nozzle and an associated pair of oppositely charged electrodes disposed on the gun. The apparatus has a housing; a nozzle attached to the housing for dispensing gas; a device for dispensing a gas through the nozzle; a device for electrostatically discharging a gas dispensed through the nozzle; and a device for restricting the flow of a gas through the nozzle. The device for dispensing and restricting flow of a gas through the nozzle may be either a bypass piping having a flow control means or a stopper that operates to provide a constant but low volume flow of an inert gas such as nitrogen to the nozzle to prevent particle build up or crystallization from occurring.
Abstract:
A powder coating apparatus for forming a resin coating on the inner periphery of a container (2) having a barrel (21), a shoulder (22) and a mouth (23) does have a holder (3) for temporarily holding the container in place, a spray gun (4) for blowing into the container a powder through an open skirt (21a) of the container. The apparatus further has a first passage (51) for guiding to the spray gun a first air stream together with the powder, a second passage (61) for feeding a second air stream for stirring the powder into the spray gun. The apparatus still further has a third passage (81) for collecting a first surplus of the powder from the container mouth (23), a fourth passage (71) for collecting a second surplus of the powder from the open skirt of the container, and control unit respectively connected to the first to fourth passages. Each control unit does effect a feedback control such that flow rate through and/or internal pressure in each passage are maintained at respective target levels, so that the resin powder is applied uniformly to the tube inner periphery ranging from the shoulder to barrel, with the proximity of the skirt being surely masked not to be covered with the powder.
Abstract:
A central controller for a powder coating system has a single processor connected to a memory, a gun controller input/output device and gun control logic for controlling a characteristic of a spray gun. An air flow controller input/output device and air flow control logic for controlling a characteristic of a pump providing air flow may also be included. A process input/output device for electrically communicating with a process input or a process output may also be included. Part identification and tracking logic, gun triggering logic, gun movement logic, booth control logic, part profiling logic and system monitoring and logging logic may also be included.