Abstract:
An electrode active material coating device includes a transfer unit for continuously transferring a substrate in a first direction; a coating die for forming a coated portion by ejecting an electrode active material slurry on the substrate; and a guide unit including a guide portion that moves along the first direction between the coating die and the substrate.
Abstract:
An electrode active material coating device according includes a transfer unit for continuously transferring a substrate in a first direction; a coating die for forming a coated portion by ejecting an electrode active material slurry on the substrate; and a guide unit including a guide portion that moves along the first direction between the coating die and the substrate.
Abstract:
A powder application apparatus includes a transport device, a powder supplier, a squeegee, and an ultra-high frequency vibration generator. The transport device is configured to move a sheet in a predetermined direction. The powder supplier is configured to supply powder on a surface of the sheet. The squeegee is positioned at a distance from the sheet, and the powder supplier is configured to adjust a thickness of the powder supplied onto the surface of the sheet. The ultra-high frequency vibration generator is configured to vibrate the squeegee at a frequency of 2 kHz or more and 300 kHz or less.
Abstract:
An apparatus for producing a roll of waxed fabric is provided, the apparatus comprising: a frame; a temperature controlled bath at an entrance end of the frame; a squeegee pressed against an exit side of the temperature controlled bath; a cooling tower adjacent the temperature controlled bath, the cooling tower including walls and a manifold to define a cooling zone, the manifold for delivering a flow of air to the cooling zone, a tower roller rotatably mounted above the cooling zone and a lower roller rotatably mounted proximate an exit side of the cooling tower; a blower for delivering air to the manifold; a collection roller rotatably mounted adjacent the alignment roller; a driver roller in rolling engagement with the collection roller; and a motor in mechanical communication with the driver motor for driving the driver motor. A method of producing a roll of waxed fabric is also provided.
Abstract:
A method and apparatus are presented. A first roller has a sensor that senses a speed of the workpiece while the workpiece is in contact with the first roller and moving relative to the first roller causing the first roller to rotate. The sensor senses the speed of the workpiece from a rotation of the first roller. A second roller causes the sealant on the second roller to be applied to a surface of the workpiece when the workpiece is in contact with the second roller and moving relative to the second roller. The second roller is rotationally linked to the first roller. A third roller causes the sealant on the surface of the workpiece to spread on the surface when the workpiece is in contact with the third roller and moving relative to the third roller. The third roller is rotationally linked to the second roller.
Abstract:
An apparatus and method for producing a coated analytic substrate using a compact and portable automated instrument located in the laboratory setting at the point of use which can consistently produce one or a plurality of coated analytic substrates “on demand” for using the analytic substrate immediately after coating, preferably without a step of rinsing the coated analytic substrate before use. The apparatus preferably uses applicator cartridges having a reservoir containing the coating compositions used to form the coatings. Preferably the cartridges are removable and interchangeable to facilitate the production of individual analytic substrates having different coatings or different coating patterns. These coated analytic substrates have superior specimen adhesion characteristics due to the improved quality of the coatings applied by the coating apparatus and due to the quickness with which the coated analytic substrates can be used in the lab after production.
Abstract:
A raw material solution (6), in which an organic semiconductor material is dissolved in a solvent, is supplied to a substrate (1). The solvent is evaporated so that crystals of the organic semiconductor material are precipitated. Thus, an organic semiconductor thin film (7) is formed on the substrate (1). An edge forming member (2) having a contact face (2a) on one side is used and located opposite the substrate (1) so that the plane of the contact face (2a) intersects the surface of the substrate (1) at a predetermined angle. The raw material solution (6) is supplied to the substrate (1) and formed into a droplet (6a) that comes into contact with the contact face (2a). The substrate (1) and the edge forming member (2) are moved relative to each other in a direction parallel to the surface of the substrate (1) so as to separate the edge forming member (2) from the droplet (6a), and while the raw material solution (6) is supplied so that a change in size of the droplet (6a) with the relative movement is maintained within a predetermined range, the solvent contained in the droplet (6a) is evaporated to form the organic semiconductor thin film (7) on the substrate (1) after the contact face (2a) has been moved. In this manner, a large-area organic semiconductor single crystal thin film having high charge mobility can be manufactured by a simple process using a solvent evaporation method based on droplet formation.
Abstract:
Device for applying a protective material on one edge of a part, includes a body equipped with elements for applying the protective material on the edge, elements for calibrating the protective material in terms of height after application, at least one stop to position the body relative to the edge and elements for calibrating the edges of the protective material including two smoothing plates that rest respectively against the right and the left surfaces of the part adjacent to the edge, at least one of the two smoothing plates being movable relative to the other smoothing plate. The body includes at least one arm that supports a smoothing plate and pivots relative to the body around an axis of rotation so as to regulate the spacing between the two smoothing plates and return elements that tend to make the arm pivot so as to bring the smoothing plates close together.
Abstract:
A doctor blade assembly for use in combination with apparatus for forming a film on a substrate. The doctor blade assembly includes a doctor blade to be mounted on a programmable robot. The doctor blade has a bottom face and spacers at opposite ends of the body of the doctor blade extending a predetermined distance down below the bottom face of the body for contacting a substrate and spacing the bottom face from the substrate. The spacers are adjustable relative to the doctor blade for adjusting the predetermined distance according to the thickness of film to be formed on the substrate. Other aspects and methods are also disclosed.
Abstract:
An automatic coating device uses a driving motor and a conveyer to form a cyclically rotating module. An injector filled with a coating material is disposed on one side of the conveyer. When an object to be coated is disposed on the other side of the moving conveyer, the coating material is then applied onto the object by the injector. This can increase the coating speed and quality.