Abstract:
An aircraft is provided with a gas turbine engine having a plurality of shafts. A first shaft provides power to an electrical generator and a propeller, while a second shaft provides power to a refrigeration system. The refrigeration system may be integrated to the propeller, like a ducted fan, or on the outer skin of the aircraft.
Abstract:
Current aircraft technology comprises of fixed wing, multi rotor and vectored engine design. The synthesis of fixed wing technology and vectoring engine technology has been implemented but limited to traditional fixed wing design aircraft. The aircraft presented has been designed with an innovation in airframe expectation, improved vectoring engine design system, and landing gear system.
Abstract:
The modular aircraft system includes a single fuselage having a permanently installed empennage and plural sets of wing modules and engine modules, with each wing and engine module optimized for different flight conditions and missions. The fuselage and each of the modules are configured for rapid removal and installation of the modules to minimize downtime for the aircraft. Short wings having relatively low aspect ratio are provided for relatively high speed flight when great endurance and/or weight carrying capacity are not of great concern. Long wings having high aspect ratio are provided for longer range and endurance flights where speed is not absolutely vital. A medium span wing module is also provided. Turboprop, single turbojet, and dual turbojet engine modules are provided for installation depending upon mission requirements for any given flight. The aircraft is primarily adapted for use as an autonomously operated or remotely operated unmanned aerial vehicle.
Abstract:
An in-flight battery recharging system for Unmanned Aerial Vehicle (UAV). This invention converts byproducts of a multi-rotor unmanned aerial vehicle's conventional propulsion system operation and airframe movements to generate electricity that, in turn, is used to power the propulsion system's electric motors, power onboard electronic components, and recharge the battery that initially powers the propulsion system's electric motors. Having this ability of recharging the battery in-flight gives an unmanned aerial vehicle a much improved flight time and range, thereby greatly increasing its utility.
Abstract:
A method of managing a power demand to assure the operation of a pilotless aircraft. The aircraft includes an internal combustion engine supplying a maximum principal power which can vary. The management method is particularly suitable for a rotary wing pilotless aircraft. It guarantees the storage of an amount of electrical energy at least equal to a recovery energy of the aircraft in the event of failure of the internal combustion engine. This recovery energy enables the control of autorotation and landing of the aircraft.
Abstract:
The invention relates to a hybrid aircraft (F). According to the invention, a suitable position for mounting an energy generation unit (14) in the aircraft is identified, said energy generation unit comprising an internal combustion engine (34) and an electric generator (30) that is coupled thereto via a shaft. Independently of the position of the energy generation unit (14), a position is also identified for a thrust generation unit (12) comprising an electric motor (24) and a propeller (20) that is coupled thereto via a shaft (22). When the aircraft (F) is built, the thrust generation unit (12) and the energy generation unit (14) are disposed in the positions identified therefor. The generator (30) is then coupled to the electric motor (24) via an electric transmission device (16).
Abstract:
An aerial vehicle comprises an elongate envelope within which are at least one first compartment for holding a lighter than air gas and at least one second compartment for holding atmospheric air and said at least one second compartment having an inlet and an outlet and at least one pair of wings extending laterally from the envelope; said wings being planar units with a leading and trailing edge, the width of the wings from their leading edges to their trailing edges being substantially less than the length of the envelope with airfoil portions fitted between the leading and trailing edges of the wing: the top and bottom of the wings are mirror images of one another; in which forward motion of the vehicle is obtainable without trust through alternate diving and climbing motion.
Abstract:
A ducted fan core for an unmanned aerial vehicle is provided that accommodates a wide variety of payloads. The ducted fan core comprises a frame, attached to which are an engine, gearbox assembly, fan, and a plurality of control vanes. A first surface on the frame comprises a plurality of connects or electrical traces. The plurality of connects are used to removably attach a variety of pods carrying various payloads. Thus, a wide variety of payloads may be delivered using the same unmanned aerial vehicle, simply by removing and attaching different pods to a fixed vehicle core. These pods may be shaped so as to form part of the vehicle exterior, and when the pods are attached to the frame, they enhance the aerodynamics of the vehicle.
Abstract:
There is provided an Unmanned Air Vehicle (UAV) including an engine and an airframe, including means for performing a deep stall maneuver at least one inflatable sleeve connected or connectable to the airframe, and means for inflating the sleeve during flight, wherein the inflated sleeve extends along the lower side of the airframe so as to protect same during deep stall landing. A method for operating an Unmanned Air Vehicle (UAV), including an engine and an airframe is also provided.
Abstract:
An aircraft for carrying at least one rigid cargo container includes a beam structure with a forward fuselage attached to the forward end of the beam structure and an empennage attached to the rearward end of the beam structure. Wings and engines are mounted relative to the beam structure and a fairing creates a cargo bay able to receive standard sized intermodal cargo containers. Intermodal cargo containers of light construction and rigid structure are positioned within the cargo bay and securely mounted therein. The beam structure is designed to support flight, takeoffs and landings when the aircraft is empty but requires the added strength of the containers securely mounted to the beam structure when the aircraft is loaded. The aircraft is contemplated to be a drone.