Abstract:
An illustration system has an image device that continually transmits images of a computer-controlled machine in operation to an image capturing software to a machine computer for monitoring purposes. The image capturing software is integrated on the navigator software. The image can be captured in the image capturing software then dragged and dropped to the navigator software to support users' programmed jobs, from the setting up to the finished product. The navigator software provides the user the ability to program a list of job events that is capable of processing on the machine computer to control the machine automation operation. A server interface connects to the navigator software that provides a remote control function via a network to monitor and machine operation control.
Abstract:
A system (10) for identifying pieces of lumber (L), comprising an identifying apparatus (12) having an imaging device (22, 100) to obtain images and a database (24) to record the images. The identifying apparatus (12) is adapted for identifying pieces of lumber (L). The system (10) is adapted for being connected to at least one of a data source (16, 126, 128) for receiving qualitative data on pieces of lumber (L) and an output destination (18, 130) to transfer at least an identification of a piece of lumber (L) thereto.
Abstract:
An image of a reference work is captured using a camera and the image is displayed on an image display device. A measurement starting point is pointed by an image position pointing device. A corresponding view line is obtained using a position on the image and a position and a direction of the camera, a robot approaches to the reference work such that it does not deviate from a projecting direction to move to a position suitable for measurement. A slit light is projected and measurement of an inclination of a face in the vicinity of a measuring point is started. An image including a bright line image on the reference work is photographed and 3-dimensional positions of points sequentially measured along a working line. A movement path of a robot is created using these positions as teaching points.
Abstract:
Numerically controlled surface processing wherein contour coordinates of a workpiece clamped in a clamping device are determined in a number of default positions by a sensor, and the coordinates are imaged point by point. Through interpolation of these coordinates, at least one continuous function for the contour profile of one coordinate is determined in one spatial direction from at least one other coordinate in a second spatial direction.
Abstract:
In order to register a robot, the operative parts of the robot are placed in a first condition. An image acquiring arrangement carried by the robot is directed towards an item, and the image of that item is acquired and stored. Subsequently the component parts of the robot are moved so that the image acquiring arrangement can acquire a second different image of the item. The process is repeated to acquire data including a plurality of images and, for each image, data concerning the position of the component parts of the robot when the image was acquired.
Abstract:
An error detection apparatus and method for use with engravers, such as gravure engravers. An error value E corresponding to the difference between a set of predetermined setup parameters and actual measurement of a portion of an engraved area on the cylinder is determined. The error value E is then used to adjust the engraver to engrave an actual cut or etch in accordance with the set of predetermined setup parameters. Advantageously, an error detection and correction system is suitable for providing a closed-loop system for engraving a cylinder. The apparatus and method may be used during initial setup or during normal operation of the engraver. Other features include an autofocus routine to facilitate the auto-focus procedure. Also, image processing is further enhanced by gap filling, discontinuity removal, and light calibration methods which may be used alone, in combination with each other, or in combination with the automatic focus system and/or automatic shoe system. Other embodiments of the invention illustrate the use of a polarizing element to polarize reflected light, as well as light directed to a surface of the cylinder prior to reflection, and the use of a light emitting diode (LED) for illuminating the surface of the cylinder. The features of the improved optic system facilitate reducing or eliminating image noise, such as glare, “blooming”, inconsistent illumination, and enhances the quality of the image captured by a CCD array associated with the camera used in the imager or imaging system.
Abstract:
Methods for assembling, handling, and fabricating are disclosed in which targets are used on objects. The targets can be specifically applied to the object, or can be an otherwise normal feature of the object. Conveniently, the targets are removable from the object or covered by another object during an assembling process. One or more robots and imaging devices for the targets are used. The robots can be used to handle or assemble a part, or a fixture may be used in conjunction with the robots. Conveniently, the CAD design system is used in designing the targets as well as for the assembly process using the targets. A plurality of targets can also be used to monitor and inspect a forming process such as on a sheet panel.
Abstract:
An engraver including an automatic tool changer and verification system for changing engraving tools on engraving heads. The engraver includes a turret having a plurality of workholders for holding a plurality of replacement tools. Some of the workholders are empty for replacing a worn tool from an engraving head on the engraver. When it is desired to change a tool on the engraving head, an empty tool holder is indexed to a tool changing position opposite the engraving head whereupon the worn tool is transferred from the engraving head to the tool changer. Thereafter, the tool changer is indexed to a position where a replacement tool is situated in opposed relationship with the engraving head. The tool changer includes a pneumatic system for causing the worn tools and replacement tools to be transferred between the engraving head and the tool changer. The engraver also utilizes a tool verification routine for verifying that a tool on the engraving head is the correct tool and/or is not defective. Moreover, the engraver may be equipped with an engraving head turret having multiple engraving heads for indexing into engraving relationship with a cylinder to be engraved. The multiple-engraving head turret facilitates, for example, reducing the number of required tool changes.
Abstract:
A method of engraving which accommodates changes in copper hardness, variations in head linearities, worn stylus, and the like. The method involves the cutting of midtone test cells, as well as highlight and full width test cells. The widths of the test cells are measured and used to establish slopes and offsets for adjustment lines, which in turn are applied inversely to transform a desired cell width into an engraving drive signal. The technique assures that the computed engraving drive signal will produce the desired cell width.
Abstract:
An engraver having an engraving signal generating system for engraving a workpiece. The engraver includes a setup circuit enabling direct dimensional control of the cavities engraved by the engraver. Controls are provided for setting at least one of a plurality of parameters, such as a black cell width, a black channel width and a highlight cell width. These parameters are fed to the setup circuit which translates them into multiplication factors for an AC signal and a video signal. The multiplied signals are combined with an offset signal to produce an engraving signal.