Abstract:
An autonomous mode controller (61) that outputs an acceleration command (SAa), a braking command (SBa) and a torque command (Ta) is connected to a steering actuator (33) and a traveling drive unit (52). The steering actuator (33) generates combined torque (T1) based upon steering torque (Tm) from a steering handle (32) and the torque command (Ta), and controls a steering angle (θ) of a vehicle based upon the combined torque (T1). The traveling drive unit (52) selects a larger one of an acceleration command (SAm) by an accelerator pedal (50) and the acceleration command (SAa) as an acceleration command (SA), and selects a larger one of a braking command (SBm) by a brake pedal (51) and the acceleration command (SBa) as a braking command (SB). The traveling drive unit (52) controls a vehicle speed based upon the acceleration command (SA) and the braking command (SB).
Abstract:
In an automotive milling machine, comprising a machine frame, comprising a controller for the travelling and milling operation, comprising a working drum, comprising a transport conveyor slewable relative to the machine frame, where the transport conveyor discharges the milled material onto a point of impingement on a loading surface of different transport vehicles, where the controller comprises a detection and control unit which monitors the alterable position of the loading surface of the transport vehicle by an image-recording system comprising no less than one sensor which continuously generates no less than one digital image of, as a minimum, the loading surface, it is provided for the following features to be achieved: the detection and control unit comprises an analysis device which detects faults or errors in the image generated by the no less than one sensor.
Abstract:
A sensor senses an attribute of a worksite at a location that is geographically spaced from a corresponding mobile machine. An operation is performed at the location, based upon the sensed attribute. An action signal is generated based on the effect data. An unmanned aerial vehicle communicates effect data, indicative of an effect of the operation at the location, to the mobile machine. The action signal can be used to control worksite operations.
Abstract:
A traffic system is disclosed for use with a plurality of mobile machines. The traffic system may have a locating device configured to generate a location signal indicative of a location of each of the plurality of mobile machines, and an onboard controller configured to regulate operation of each of the plurality of mobile machines based on the location signal. The traffic system may also have a communication device, and a worksite controller in communication with the locating device and onboard controller via the communication device. The worksite controller may be configured to calculate a directed graph of the worksite based on the location signal and known routes for each of the plurality of mobile machines. The worksite controller may also be configured to determine a congestion metric based on the directed graph, and to selectively command the onboard controller to implement a responsive operation based on the congestion metric.
Abstract:
A terrain mapping system is disclosed for a machine having at least one traction device. The system may have a sensor associated with the machine and configured to generate a signal indicative of a position of the machine. The system may also have at least one controller in communication with the sensor. The at least one controller may be configured to receive the signal from the sensor, and divide an area between the at least one traction device and a work surface into a plurality of virtual tracking features based on the signal and known geometry of the machine. The at least one controller may also be configured to track movement of the plurality of virtual tracking features, and update an electronic terrain map of a worksite based on the movement of the plurality of virtual tracking features.
Abstract:
A system and method for operating a machine is disclosed. The system may include an input device configured to select from a plurality of modes of operation for the machine, the plurality of modes of operation comprising a manual mode, a remote mode, and an autonomous mode. The system may further include a controller coupled to the machine, the controller configured to place the machine in the selected mode of operation based on an input at the input device. The system may further include a transmitter configured to transmit a heartbeat signal. The system may further include a receiver configured to receive an acknowledgment signal from a remote system in response to the transmitted heartbeat signal.
Abstract:
A system for controlling a supply machine and a paving machine includes a supply machine having a first sensor for generating first signals indicative of a first characteristic associated with the supply machine, and a first controller configured to determine a first characteristic associated with the supply machine. The paving machine includes a second sensor for generating second signals indicative of a second characteristic associated with the paving machine and a second controller configured to determine the second characteristic associated with the paving machine, receive first operating signals indicative of the first characteristic associated with the supply machine, and generate command signals to control operation of the paving machine based upon the first characteristic associated with the supply machine and the second characteristic associated with the paving machine.
Abstract:
An autonomous mode controller (61) that outputs an acceleration command (SAa), a braking command (SBa) and a torque command (Ta) is connected to a steering actuator (33) and a traveling drive unit (52). The steering actuator (33) generates combined torque (T1) based upon steering torque (Tm) from a steering handle (32) and the torque command (Ta), and controls a steering angle (θ) of a vehicle based upon the combined torque (T1). The traveling drive unit (52) selects a larger one of an acceleration command (SAm) by an accelerator pedal (50) and the acceleration command (SAa) as an acceleration command (SA), and selects a larger one of a braking command (SBm) by a brake pedal (51) and the acceleration command (SBa) as a braking command (SB). The traveling drive unit (52) controls a vehicle speed based upon the acceleration command (SA) and the braking command (SB).
Abstract:
Embodiments of the present invention are directed to a method for performing non-contact based determination of the position of an implement. In one embodiment, the method includes using a non-contact based measurement system to determine a first measurement comprising the position of the implement relative to a mobile machine coupled with the implement, determining a second measurement comprising the geographic position of the mobile machine and determining the geographic position of the implement using the first measurement and the second measurement.
Abstract:
A system for controlling a machine during an autonomous material moving operation includes a terrain sensing system, a position sensing system, and a ground engaging work implement. A controller is configured to determine the topography of the work surface, generate a first target profile, generate signals to autonomously operate the machine along a work surface, receive a plurality of signals associated with a plurality of necessary input conditions, and generate a pause command based upon an absence of one of the plurality of necessary input conditions to define a pause condition. The controller may determine the position of the machine, determine an estimate of an amount of material being moved, generate a second target profile, and generate signals to re-start autonomous operation of the machine based upon the second target profile after elimination of the pause condition.