Abstract:
A signal processing circuit includes: a delay line configured to output, to a plurality of taps, signals with different delay times obtained by delaying an input signal, respectively; and a plurality of synchronization circuits configured to sample the signals from the plurality of taps in a phase in synchronization with a clock signal, wherein each of the plurality of synchronization circuits samples a sample signal from one of the plurality of taps in different phases and outputs a plurality of output signals.
Abstract:
A SerDes data sampling controller that includes a gear shifting data sampling clock that zeroes the data sampling skew at the center of the unit interval during the CDR phase lock stage, and then skews the data sample timing away from the center of the unit interval as the DFE coefficients adapt during the data transfer stage. This allows the controller to implement the best (unskewed) data sample timing during the CDR phase locking stage, and then skew the data sample timing after the DFE coefficients have adapted to provide the best (skewed) data sample timing for data bit sampling during the data transfer stage. The data sampling gear shifter may apply a variable skew value to the transition sampling or quadrature (Q) data sampling clock differentially varying the quadrature (Q) transition sampling clock from the inphase (I) data sampling clock.
Abstract:
A calibration device and related method for a phase difference between data signal and clock signal are disclosed. An apparatus of the invention includes: an adjustable delay circuit for delaying at least one of a first input signal and a second input signal according to a delay control signal, and generating a first signal and a second signal; a phase detection circuit for detecting a phase difference between the first signal and the second signal to output a phase difference signal; a charge pump and a capacitor for outputting a control signal according to the phase difference signal; a comparison circuit for outputting a comparison result according to the control signal; and, a digital control circuit for outputting the delay control signal according to the comparison result.
Abstract:
A method comprising transmitting a delay value to each of a plurality of digital subscriber line (DSL) transceivers, by a distribution point unit (DPU), and receiving a plurality of signals at substantially the same time, wherein each of the plurality of signals is from a different DSL transceiver in the plurality of DSL transceivers and transmitted at different times based on the delay value and a corresponding propagation delay.
Abstract:
A transmitting device can suppress degradation of the video quality and determine a proper transmission rate, and include a transmitting unit that transmits a communication packet to a receiving device, a receiving unit that receives a feedback packet, which is a response signal corresponding to the communication packet, from the receiving device, a detecting unit that detects a change of a reception interval of the feedback packet, and a transmission rate determining unit that decreases a transmission rate at which the transmitting unit transmits the communication packet in the case where the change of the reception interval is detected, and increases the transmission rate on the basis of an amount of change of a travelling speed of at least either the transmitting device or the receiving device before and after the decrease in the transmission rate.
Abstract:
Primary serial interface logic is synchronized by cycling through a plurality of delays upon power up of the serial interface until a synchronization bit pattern is located. A minimum delay and a maximum delay are determined for the primary serial interface logic, and a delay is set to a midpoint between the minimum delay and the maximum delay. Secondary serial interface logic is synchronized by cycling through a plurality of delays until the output of the secondary serial interface logic equals the output of the primary serial interface logic. A minimum delay and a maximum delay are determined for the secondary serial interface logic, and a delay is set to a midpoint between the minimum delay and the maximum delay.
Abstract:
A method for adjusting a serial data signal having multiple sets of bits includes the following steps. First, one set of bits in the serial data signal is over-sampled to generate a first set of over-sampled bits. Next, every adjacent two bits of the first set of over-sampled bits are compared to generate one set of edge bits. Then, a delay operation is determined according to the set of edge bits. Afterwards, a displacement operation is executed on next sets of bits in the serial data signal according to the delay operation.
Abstract:
A timing adjustment circuit includes at least one data line; a phase synchronization circuit that includes a plurality of oscillation delay elements which oscillate an oscillation signal, and that is configured to oscillate the oscillation signal by synchronizing a phase of a feedback clock with a phase of a reference clock; at least one delay circuit that includes a delay element which is disposed on the data line and which is equivalent to one of the plurality of oscillation delay elements, and that is configured to delay data which is to be transmitted on the data line; and a delay adjustment unit configured to adjust an amount of delay of the delay element of the delay circuit in accordance with a signal associated with oscillation of the phase synchronization circuit.
Abstract:
A method and system are provided for aligning signals in a communication system. The method and system include alignment logic or functionality configured to compensate for signal propagation discrepancies when communicating signals between one or more other devices. The alignment logic may operate to adjust one or more communicated signals, so that signals that may have different propagation times arrive at one or more devices at a desired time. The system and method may be used when initializing a communication system and before communicating data. The system and method operate to adjust one or more signals, such as a data strobe signal in a memory system for example, so that the one or more signals arrive at one or more devices spaced apart in time within a defined tolerance at a desired time. The alignment logic is used to compensate for signal propagation delays which can be associated with a signal propagation path.
Abstract:
The logic block 103 generates a serial-data signal DATA using a clock signal CLK generated by a clock generator 104. Then, a skew adjusting unit 111 adjusts a delay of the serial-data signal DATA based on the phase relationship between the clock signal CLK and the serial-data signal DATA, and outputs resultant serial-data signal DATA-SK and clock signal CLK to a FF circuit 112. The FF circuit 112 shapes the serial-data signal DATA-SK using the clock signal CLK, and transmits the resultant serial-data signal DATA-FF to outside the device. Accordingly, even if jitter of a clock signal is superimposed on a data signal after signal processing, the influence of this jitter is reduced, thus providing a data transmitting device capable of transmitting a data signal to outside the device with the influence of the jitter reduced.