Abstract:
A fluid separation apparatus includes a hydrocyclone (100) having an orifice (134) therein, a housing (202) disposed in the hydrocyclone and having a bore (204), a piston (240) disposed in the bore (204) of the housing (202), and a first annular seal (248) disposed between the housing (202) and the piston (240) and configured to restrict fluid communication between the housing (202) and the piston (240), wherein the piston (240) includes a passage (242) extending through the piston (240) and having a pin (254) coupled to a first end (240a) of the piston, the piston (240) being actuatable to move between a first position (260) where the pin (254) is clear of the orifice (134) of the hydrocyclone, and a second position where the pin (254) is disposed in the orifice (134), wherein, the piston (240) is configured such that as the piston is actuated from the first position to the second position, fluid is permitted to flow into the passage (242) of the piston (240) from the bore (204) of the housing (202).
Abstract:
A method of cleaning a powder coating production line, the method including: providing a powder coating production line including equipment, an automatic cleaning tool, and a monitoring device; receiving, by the equipment, an instruction of automatic cleaning, and allowing the equipment to enter an automatic cleaning mode; cleaning, by the automatic cleaning tool, the equipment of the powder coating production line; monitoring, according to a preset monitoring condition and by the monitoring device, whether the automatic cleaning is completed; stopping the automatic cleaning when the monitoring device indicates the automatic cleaning has been completed, or continuing the automatic cleaning of the equipment; and turning off the automatic cleaning mode of the equipment.
Abstract:
A separator provides mechanical separation of suspended particles or debris within a fluid. The separator includes a cylindrical body having an inlet pipe for directing the fluid generally tangentially into the cylindrical body, causing the fluid to spin around the inside diameter of the cylindrical body. An outlet pipe, having an outer diameter smaller than the inside diameter of the cylindrical body, can extend from a top end of the cylindrical body into the cylindrical body. Directional blades can be disposed on an outer surface of the outlet pipe, with a gap between the directional blades and the inside surface of the cylindrical body. A baffle dome disposed an a lower end of the cylindrical body slows down the fluid flow, causing the particles and debris to remain below the baffle and settle. The fluid then exits out the outlet pipe as a cleaned fluid.
Abstract:
A cyclone device for separating a sticky material from a gas stream, comprising a tin body; an introducing tube, connected to the tin body and arranged on a facet of the tin body; a central exhaust pipe, arranged within the tin body on a top position thereof, a conical tin connected to a bottom of the tin body at one end and having a particle discharging exit at the other end; a supporting wheel set, arranged within the tin body and adjacent to an end of the conical tin; and a scraping mechanism arranged movably on the supporting wheel set.
Abstract:
A variety of improved hydroclone based fluid filtering systems are described. The hydroclones generally include a tank having an internal chamber and a filter (preferably a surface filter) that is positioned within the internal chamber. The filter defines a filtered fluid chamber within the internal chamber of the tank. The hydroclone may be operated such that a vortex of flowing fluid is formed between the chamber wall and the filter with the filter being located in the center of the vortex. With this arrangement, the filter acts as a cross-flow filter. In one aspect of the invention, a circulating cleaning assembly is provided in the hydroclone region. In yet another aspect of the invention, improved hydroclone intake structures are described.
Abstract:
A vacuum clean-out system including a separator chamber and associated collection chamber for removing liquid material and debris from a vacuum output and providing a vacuum return line free of contaminants. A vacuum exhaust line is coupled to a cyclonic separator chamber that induces a circular rotation within the incoming vacuum stream, causing the liquid and debris to impinge the chamber's surfaces and fall to the bottom thereof while the “clean” vacuum is drawn upwards into a return line. The collection chamber is maintained at the same negative pressure as the separator chamber so that the accumulating liquid and debris easily drains into the collection chamber. A sensor associated with the collection chamber may be used to determine when the collection chamber is full and needs to be discharged. At that point, the separator chamber is isolated from the collection chamber, the collection chamber is vented and the accumulated material is discharged and/or analyzed. Advantageously, the separator chamber remains under negative pressure and continues the vacuum clean-out process uninterrupted.
Abstract:
A cyclone-type dust collecting apparatus having a dust removing portion for removing from the grill portion the dust and foreign substances that become attached to the grill portion of the grill member while the grill portion is rotated by the vortex air of the cyclone body. The dust removing portion includes rotating means disposed at a lower portion of the grill member for rotation by an air current passing therethrough; a rotary member rotatably connected to the rotating means, and disposed separate from an end of the grill member by a predetermined distance; and a brush member having one side connected to the rotary member and the other side being disposed in contact with the grill portion of the grill member for removing the dust and foreign substances from the grill portion. As the cleaning operation starts, the brush member inside of the cyclone-type dust collecting apparatus is rotated by the vortex current generated therein, to remove dust or contaminants from the grill portion of the grill member. Accordingly, clogging of the grill portion of the grill member is prevented, and as a result, deterioration of the suction force and overload of the motor can be inhibited.
Abstract:
A cyclone having a deblocking device comprising a rod relatively moveable into or out of an orifice to dislodge any solid matter therein. The rod may be provided with a formation to enhance the dislodgement.
Abstract:
A device for separating particles from a liquid to be treated is disclosed. The device has a cylindrical enclosure with an inlet for creating a swirling flow at its upper end and an annular channel formed by a flow diverter plate leading to a retention chamber at its base. The flow diverter generates an ascending swirling flow of treated liquid which is discharged through an axial outlet tube in the uppermost portion of the enclosure. The flow diverter includes at least one plane central section and means for adjusting its longitudinal position to adjust the annular channel. The axial outlet tube is extended downwardly by a flow adjusting element to create a flow of annular section.
Abstract:
A cyclone separator comprising a separating tower defining a separating chamber having a gas inlet at the upper portion for introducing gaseous fluid having particles suspended therein with a tangential velocity component, and outlet pipe means co-axially with the separating chamber at the upper portion thereof to allow the gaseous fluid to flow out of the separating chamber. The separating tower has a bottom which is slightly inclined with respect to a horizontal plane to provide a lowermost portion in the bottom, and a particle outlet port at said lowermost portion. A vibrating motor applies vibration at least to said bottom of the separating tower, and a baffle plate is provided in said separating chamber above and spaced from said particle outlet port.