Abstract:
A flux is supplied from a flux transfer head having a flux transfer pin to a predetermined position on a substrate, and then a solder ball is mounted on the predetermined position by a solder ball mounting head having a suction nozzle. The solder ball mounting head and the flux transfer head are provided alternately on a head supporter. When the rotation of the head supporter is stopped, sucking a solder ball suction by the suction nozzle, depositing the flux on a free end of the flux transfer pin, transferring the flux to the substrate by the flux transfer pin, and mounting the solder ball on the predetermined position by the ball mounting head, and examining whether the solder ball exists on the suction nozzle by which the ball mounting operation has just carried out are executed.
Abstract:
A machining method for an integrated piping plate, for example, composed of a plurality of plates joined together, and in which an instrument and a component constituting an apparatus, or the instrument, or the component are or is disposed on one surface or both surfaces of the integrated piping plate, and the instrument and the component, or the instrument, or the component are or is connected by fluid channel grooves formed in joining surfaces of the plates, and communication holes formed in the plates. The machining method welds the joining surfaces of the plates around the entire periphery of the fluid channel grooves, for example, by an FSW welding machine, to join the plates. Compared with joining of the plates by an adhesive, the machining method can increase the durability of the plate joining portion and increase pressure resistance. Also, the method can increase work efficiency and further downsize the integrated piping plate.
Abstract:
A tube for storing micro-litre volumes is provided. The tube is open at one end and comprises a body portion of substantially square cross section; a shoulder portion at one end of the body portion and providing the open end of the tube, the cross section of the shoulder portion being greater than that of the body portion; and a formation providing a snap fit connector portion at the other end.
Abstract:
An optical processing apparatus includes an emitter for emitting light, a first light path for directing the light to a position to be processed on a workpiece, and a processing head. The processing head includes an optical system provided in the first light path, for shaping the light, a second light path having a portion shared with the first light path, the second light path directing light reflected from the workpiece, and an optical receiver for receiving the reflected light from the second light path. The optical processing apparatus further includes an actuator for changing a positional relationship between the optical system and the workpiece, a feeder for supplying a solder to the workpiece, a first shifter for moving the processing head in a first direction in parallel to an optical axis of the light emitted from the emitter, a second shifter for positioning the feeder in the first direction away from the processing head when the processing head is moved away from the workpiece by the first shifter, and a third shifter for moving the feeder against the processing head in a second direction perpendicular to the first direction while the processing head is moved by the first shifter. The optical processing apparatus allows the spot of the incident light and the position of soldering to be readily set depending on the configuration of a workpiece and can thus solder the workpiece at higher quality under soldering conditions optimized for the workpiece.
Abstract:
A method of soldering electronic components to a heat sensitive flexible substrate with cooling for a vector transient reflow process is disclosed. The method comprises applying solder paste to the substrate and placing electronic components to the substrate to form a substrate assembly. The method further includes locating the substrate assembly on a pallet having a heat conductive layer for heat sinking means from the substrate. The method further includes rapid localized heating to a melting temperature sufficient to melt the solder paste using a supplemental heat source. While exposing the deposited solder paste to further rapid localized heating, the method further comprises cooling the pallet at the second surface to diffuse the heat from the substrate defining a temperature gradient across the substrate.
Abstract:
A solder machine that can automatically solder a fiber optic cable to a package. The solder machine includes a fixture for supporting the cable and the package. The machine has a gas heater that emits a heated inert gas. The gas heats at least a portion of the package to a soldering temperature. The machine also includes a solder dispenser that dispenses solder into the heated package. The solder attaches the fiber optic cable to the package. The inert gas prevents undesirable oxidation at the solder site. The use of an inert gas eliminates the need for solder flux. The heating, gassing and dispensing steps can be controlled by a computer to automate the entire process. The package and fiber optic cable can be supported by a pallet that is loaded and then unloaded from the machine to further improve the ease of operation and decrease the cost associated with the solder process.
Abstract:
A method for inspecting welds between welded tubular ends includes arranging a series electromagnetic acoustic transducer (EMAT) assemblies in circumferential direction adjacent to an inner and/or outer surface of at least one of the welded tubular ends and inducing the EMAT assemblies to transmit sequentially or simultaneously acoustic shear wave signals towards the weld and to detect the shear waves reflected by and/or passing through the weld while the EMAT assemblies are maintained in a substantially fixed position relative to the weld such that at least a substantial part of the weld is scanned by the EMAT assemblies instantly after the weld is made.
Abstract:
A method and system for diagnosing, solving, and/or controlling, in particular remotely, a given technical problem likely to arise before, during or after a heat treatment operation on metals, in particular in the welding or cutting field, and to provide the most suitable solution thereto, and to do so by minimizing the time needed to solve this problem and therefore by reducing the loss of productivity likely to occur because of this technical problem.
Abstract:
The present invention provides methods for connecting electrically conductive elastomer to electronics that reduce cost and time for manufacturing a tactile sensor that includes an electrically conductive elastomer such as a conductive foam. The methods provide a good connection between the electrically conductive elastomer and the electrodes connected to the electronics, which provide for repeatable measurements. The methods can be used for all cases of electrically conductive elastomers and elastomers made to be conductive with the addition of conductive particles (such as carbon, silver, nickel, gold, etc.) including thermoplastic and some thermosetting elastomers.
Abstract:
A method for reworking a ball grid array (BGA) of solder balls including one or more defective solder balls on an electronic component workpiece using a single-ball extractor/placer apparatus having a heatable capillary tube pickup head optionally augmented with vacuum suction. A defective solder ball is identified, extracted by the pickup head and disposed of. A nondefective solder ball is picked up by the pickup head, positioned on the vacated attachment site, and thermally softened for attachment to the workpiece. Flux may be first applied to the replacement solder ball or to the vacated attachment site. The extractor/placer apparatus may be automated to locate, extract and replace defective balls for completion of a fully operable BGA.