Abstract:
A polishing apparatus has a polishing table having a polishing surface, a top ring for holding a workpiece to be polished and pressing the workpiece against the polishing surface on the polishing table, and a film thickness measuring device embedded in the polishing table. The film thickness measuring device includes a light source for applying light having a predetermined wavelength to a surface of the workpiece, a spectroscope for separating light reflected from the surface of the workpiece, and a charge coupled device array for capturing light separated by the spectroscope. The polishing apparatus also has a controller operable to analyze information captured by the charge coupled device array over the entire surface of the workpiece to obtain a film thickness at a desired point on the surface of the workpiece.
Abstract:
A polishing apparatus includes a top ring for holding a substrate and a polishing table having a polishing surface. The substrate held by the top ring is brought into contact with the polishing surface, and in this state, the polishing table and the substrate are moved relative to each other to thereby polish the substrate. Expendable replacement components to be bonded to the top ring and the polishing table, such as a backing film, a pressure ring and a polishing cloth, are bonded in such a manner that pieces of heat-sensitive adhesive tape are interposed between the expendable replacement components on the one hand and the top ring and the polishing table on the other. The heat-sensitive adhesive tape is switchable between a non-adhesive state and a adhesive state according to whether the temperature thereof is higher or lower than a predetermined set temperature. Thus, the expendable replacement components can be bonded and removed extremely easily by the temperature control of the heat-sensitive adhesive tape.
Abstract:
A centerless cylindrical grinding machine, for through-feed and in-feed grinding of various workpieces (8), has a first driven positioning axis XS for a grinding spindle head (2) with a grinding wheel (1) and a second driven positioning axis XR, running parallel to the positioning axis XS, for a regulating spindle head (4), with a regulating wheel (3). The positioning axes XS and XR are arranged perpendicular to the rotation axes (5, 6) or the grinding wheel (1) and the regulating wheel (3). A workpiece support (7) on a carriage (12) and an inner- or outer-acting wheel-true device (9) are arranged between the grinding spindle head (2) and the regulating spindle head (4). During operation, the grinding spindle head (2), the regulating spindle head (4), the workpiece support (7) and the wheel-true device (9) are located within a safety housing (15). The carriage (12) may be adjusted along a driven positioning axis YW which runs at right angles to the positioning axes XS and XR, along a carriage track (13) and may be moved to a position outside the safety housing (15). The invention has the advantages that the machine is not just a simpler and therefore cheaper, but is also more reliable in operation and permits easy retooling.
Abstract:
An algorithm uses offline metrology to control a process by passing information from an outer control loop to an inner control loop, extended Kalman filter estimator. The inner control loop operates online, and the outer control loop operates asynchronously with respect to the inner control loop. The online control loop is updated for each subsequent process. The offline metrology is optionally updated for each subsequent process.
Abstract:
Planarizing machines and methods for mechanical and/or chemical-mechanical planarization of micro-device workpieces are disclosed herein. In one embodiment, a method for polishing a workpiece includes determining an estimated frequency of serial defects in a workpiece, pressing the workpiece against a polishing pad and moving the workpiece relative to the pad. The method further includes vibrating the workpiece and/or the pad at a frequency that is greater than the estimated frequency of the serial defects. In one aspect of this embodiment, determining the estimated frequency of serial defects can include: determining a relative velocity between the workpiece and the polishing pad; estimating the length of a mark on the workpiece; estimating the time a particle in a planarizing solution is in contact with the workpiece; and estimating the number of cracks in the workpiece.
Abstract:
Microelectronic devices including a layer of germanium and selenium, optionally including up to 10 atomic percent silver, show promise for select applications. Manufacturing microelectronic devices containing such layers using conventional CMP processes presents some significant challenges. Embodiments of the invention provide methods of planarizing workpieces with GenullSe layers, many of which can be carried out using conventional CMP equipment. Other embodiments of the invention provide chemical-mechanical polishing systems adapted to produce planarized workpieces with GenullSe layers or, in at least one embodiment, other alternative layers. Various approaches suggested herein facilitate production of such microelectronic devices by appropriate control of the down force of the GenullSe layer against the planarizing medium and/or one or more aspects of the planarizing medium, which aspects include pH, abrasive particle size, abrasive particle hardness, weight percent of abrasive.
Abstract:
A saw cutting pattern is dynamically established for a semiconductor dicing saw based on detection of the saw blade contacting a wafer or a portion of a wafer. The dynamic cutting pattern may terminate cuts if the saw blade no longer contacts the wafer or a portion of a wafer. Thus, irregular shaped wafers may be cut without requiring that an entire predefined cutting pattern be carried out and/or without previously mapping the shape of the wafer or portion of a wafer. A map of the wafer or a portion of a wafer may also be generated based on the detection of the saw blade contacting the wafer during a first cutting pass and may be used during a second cutting pass.
Abstract:
Process for grinding the rim of an ophthalmic lens that has two opposite faces, following a predetermined contour corresponding to that of a ring of a spectacle frame in which the lens is intended to be mounted, the contour being delimited on each of the faces by an edge, and the process includes a plotting stage in which the three-dimensional shape of at least one of the edges is plotted. In the plotting stage, the edge is scanned on the illuminated face of lens using a light beam forming a light spot on the face, the successive positions of an image of the light spot are plotted simultaneously on optical reception elements pointing towards the light spot, and the three-dimensional shape of the edge is deduced from the plots made, machining of the lens being carried out according to the plot or plots.
Abstract:
A conditioning disk actuating system for raising and lowering a conditioning disk inside a conditioning head for the conditioning of semiconductor wafer polishing pads. The system includes a fluid-actuated cylinder which is coupled to a travel hub vertically slidably mounted in a travel housing provided inside the conditioning head. The conditioning disk is mounted on the bottom end of a disk shaft carried by the travel hub. The fluid-actuated cylinder is operated to selectively lower and raise the travel hub and conditioning disk to press the disk against the polishing pad and remove the disk from the polishing pad, respectively. A position sensing mechanism may be provided in the conditioning head for revealing the nullupnull or nulldownnull position of the conditioning disk.
Abstract:
In an apparatus and a method for correcting a grinding amount of a unit liquid crystal display panel, by grinding an edge of a unit liquid crystal display panel; generating grinding pictures of the unit liquid crystal display panel; calculating an error value by comparing the grinding pictures with a reference picture; and changing a set value of a grinding unit according to the error value. In addition, by disposing a grinding amount correcting apparatus in a grinding apparatus, correcting a grinding amount of a unit liquid crystal display panel can be performed by an automatic system.