Abstract:
A scanning probe microscope assembly that has an atomic force measurement (AFM) mode, a scanning tunneling measurement (STM) mode, a near-field spectrophotometry mode, a near-field optical mode, and a hardness testing mode for examining an object.
Abstract:
An optical apparatus, especially a scanning microscope (1), wherein an expanded laser beam (2) is divided into several partial beams (4) by micro lenses (5) arranged next to one another. Each partial beam (4) is focused onto a focal point (11) by a common objective lens (7) to optically excite a sample (8). Fluorescent light emanating from the individual focal points (11) of the sample (8) is registered by a photo sensor (13) arranged behind the objective lens (7) as seen from the sample (8). Each photon of the fluorescent light coming from the sample (8) and being registered by the photo sensor (13) is excited by at least two photons of the laser beam (2).
Abstract:
The disclosure is concerned with an electron microscope comprising a casing for encasing an assembly and a display disposed to the casing. The assembly comprises a vacuum container, a vacuum pump for evacuating the vacuum container, an electron emitter disposed at the upper position of the vacuum vessel, a sample chamber disposed at the lower position of the vacuum container and capable of projecting from the casing and a detector for detecting an electron beam emitted from a sample placed in the sample chamber.
Abstract:
The electron beam proximity exposure apparatus comprises: an electron beam source which emits an electron beam; an electron beam shaping device which shapes the electron beam; a mask which has an aperture and is disposed on a path of the shaped electron beam; a deflecting and scanning device which deflects the electron beam to scan the mask with the shaped electron beam; and a stage which holds and moves an object, wherein the mask is disposed in proximity to a surface of the object, and a pattern corresponding to the aperture of the mask is exposed on the surface of the object with the electron beam having passed through the aperture, wherein the electron beam shaping device shapes the electron beam into a slender beam of which cross section has a small width in a direction of the scanning and a large width in a direction perpendicular to the direction of the scanning. Thus, in the electron beam proximity exposure apparatus, the responsiveness of the on-off control over the application of the electron beam can be improved with keeping the scanning width large without lowering the throughput of the exposure apparatus.
Abstract:
A mass spectrometer according to the present invention includes: an ion source; a mass analyzer for analyzing ions generated by the ion source with their mass to charge ratio; an ion lens composed of platelet electrodes of an even number no less than four arranged radially and symmetrically around an ion optical axis connecting the ion source and the mass analyzer; and a voltage generator for applying a voltage composed of a DC voltage and an RF voltage to a group of alternately arranged platelet electrodes and for applying another voltage composed of the same DC voltage and another RF voltage having the same frequency and the opposite polarity to the other group of alternately arranged platelet electrodes. When ions are introduced into the ion traveling space defined by the inner surfaces of the platelet electrodes, the ions travel along the ion optical axis and converge to a rear focal point of the ion lens, while they are vibrated by the voltages applied to the platelet electrodes. By placing a small hole or orifice communicating to the next chamber at the rear focal point of the ion lens, larger number of ions can be sent to the next chamber, which enhances the sensitivity and precision of the mass spectrometer.
Abstract:
An ion beam implanter includes an ion beam source for generating an ion beam moving along a beam line and a vacuum or implantation chamber wherein a workpiece is positioned to intersect the ion beam for ion implantation of a surface of the workpiece by the ion beam. The ion beam implanter further includes a workpiece support structure coupled to the implantation chamber and supporting the workpiece. The workpiece support structure includes a rotation member rotatably affixed to the implantation chamber. Rotation of the rotation member with respect to the implantation chamber changes an implantation angle of the workpiece with respect to the portion of the ion beam beam line within the implantation chamber. The workpiece support structure further includes a translation member movably coupled to the rotation member and supporting the workpiece for linear movement along a path of travel. The traslation member moves along a direction of movement such that a distance that the ion moves through the implantation chamber remains constant during movement of the workpiece along its path of travel.
Abstract:
An electron detection device for use with an electron microscope defining a sample chamber. The device comprises a housing which in use is mounted to and opens into or forms part of a sample chamber of an electron microscope. A support structure is attached to the detection device housing and is in communication with the sample chamber in use. The support structure supports within it a member from which depends a phosphor scintillator, the member being movable between an extended position in which the phosphor scintillator is close enough to a sample to be struck by electrons and a retracted position. A control system controls movement of the member; and a detector monitors light emitted by the phosphor scintillator in response to electron impact.
Abstract:
The present invention provides a column tilt apparatus and method for providing an off-normal angle of incidence of a beam in a scanned beam system onto a substrate passing through the eucentric point that is electro-mechanically adjustable during operation while maintaining vacuum integrity of the column and work chamber, and without introducing significant vibrations.
Abstract:
A magnetic lens assembly for providing a magnetic deflection field for a beam of charged particles is disclosed. The assembly includes a focusing lens device for providing a magnetic field which has substantially rotational symmetry in respect of a symmetry axis of the assembly and acts on the beam traversing the magnetic field as a focusing lens with an optical axis, and includes an axis shifting device for producing a corrective magnetic field which is superposable on the magnetic field provided by the focusing lens device and acts on the beam such that the optical axis is shiftable parallel to the symmetry axis of the assembly. The axis shifting device includes a first set of axially spaced apart rings which are positioned concentrically in respect of the symmetry axis and are made of a material which is substantially not electrically conductive and has a high magnetic permeability. At least one axis shifting coil is provided with a plurality of current conductor windings for producing the corrective magnetic field. The current conductor windings of the axis shifting coil engage around at least one of the rings of the first ring set.
Abstract:
A method and system for increasing the efficiency and reducing the time required for defect inspection of microfabricated structures such as semiconductor wafers, masks or reticles for micro-fabrication, flat panel displays, micro-electro-mechanical (MEMs). In one embodiment a method of inspection of micro-fabricated structures is optimized by statistically analyzing defect data during inspection by collecting defect data during inspection, calculating at least one statistic of the defect data, continuing inspection while the at least one statistic is outside a predetermined range and stopping inspection when the at least one statistic is within the predetermined range.