Abstract:
A composition formed by compounding from 55 to 75 parts by mass of a carbon black (1) having a nitrogen adsorption surface area of at least 35 m2/g and less than 50 m2/g and from 5 to 20 parts by mass of a carbon black (2) having a nitrogen adsorption surface area of at least 50 m2/g and at most 95 m2/g with 100 parts by mass of a rubber component including from 30 to 70 mass % of butadiene rubber having a cis-1,4 bond content of at least 97% and a Mooney viscosity (ML1+4) of at least 45 at 100° C., a ratio (T-cp)/(ML1+4) of the viscosity of a 5 mass % toluene solution at 25° C. (T-cp) [cps] to the Mooney viscosity being at least 2.0, and from 30 to 70 mass % of other diene rubbers; the total of the carbon blacks (1) and (2) being from 60 to 95 parts by mass.
Abstract:
In carbon black of the present invention, peak intensity IA of a main peak derived from Fe3C, peak intensity IB of a main peak derived from FeS, and peak intensity IC of a main peak derived from FeO(OH) in a radial distribution function, which is obtained by performing Fourier transform with respect to a broadband X-ray absorption fine structure spectrum of a K absorption edge, satisfy 0.7≦IA(IB+IC)≦6.0. A production method for a carbon black of the present invention includes subjecting raw material carbon black to a heat treatment at a temperature of 900° C. to 1500° C. for a time of 5 minutes to 180 minutes under an atmosphere of a halogen element-containing gas.
Abstract:
A nitrile copolymer rubber composition contains a nitrile copolymer rubber (A) with an iodine value of 20 to 80 and white carbon with a specific surface area of 20 to 48 m2/g (B). A nitrile copolymer rubber composition is excellent in normal physical properties and is superior in compression set resistance under high temperature and low temperature conditions.
Abstract:
Embodiments of the disclosure generally provide flame retardant compositions and methods comprising organic polymers, mineral fillers, high surface area mineral fillers and process aids. Compositions of the disclosure additionally are comprised of high surface area hydrated metal carbonate fillers, including the mesoporous amorphous magnesium carbonate filler Upsalite. The filler's porous structure and high surface area provides high water capacity, enhanced physical and chemical interaction with a polymer in composite, lower by weight loadings of filler in a composite, as well as effective flame retardancy.
Abstract:
A hose rubber composition and hose having improved crack resistance while ensuring flame retardance are provided. The hose rubber composition includes: a rubber component including 70 parts by mass or more chloroprene rubber in 100 parts by mass the rubber component; and 45 parts to 65 parts by mass carbon black with respect to 100 parts by mass the rubber component, wherein the carbon black has an iodine adsorption number of 20 mg/g to 100 mg/g, and a DBP oil absorption number of 50 mL/100 g to 150 mL/100 g.
Abstract:
The present invention discloses an expandable vinyl aromatic polymer comprising: a) a matrix of a vinyl aromatic polymer, b) 1-10% by weight, calculated with respect to the polymer (a), of a blowing agent embedded in the polymeric matrix, c) 0.1 to 5% by weight, calculated with respect to the polymer (a), of talcum having a D50 particle size, measured by sedigraph (ISO 13317-3), of between 2.3 and 5 μm and a BET specific surface area, measured according to DIN 66131/2, of between 4.2 and 9.5 m2/g, d) 0.1 to 6% by weight, calculated with respect to the polymer of carbon black with a BET specific surface area, measured according to ASTM D-6556, of between 9 and 65 m2/g, e) 0.1 to 1% by weight, calculated with respect to the polymer (a), of polyethylene wax homogeneously distributed in the polymeric matrix.
Abstract:
A composition is provided that includes: a carbonized carbon having an iodine number of at least 60 mg/g and a domain size of between 1.0 and 2.3 nm. An article or fuel is provided that includes the composition in a polymer forming a matrix or water suspension, respectively. A composition of so provided and derived from wood has been assigned a new CAS number (CAS No. 1362167-53-0).
Abstract:
An unvulcanized tire includes an inner member including a rubber composition. The composition includes rubber component, carbon black and sulfide compound. The rubber component includes isoprene-based rubber, the sulfide compound of formula (I), where R1 represents a hydrogen atom, a linear or branched alkyl or alkenyl group, or a cyclic alkyl or alkenyl group, A represents O, S, NH or NR2, R2 represents a linear or branched alkyl or alkenyl group, or a cyclic alkyl or alkenyl group, n represents a whole number of 1 to 6, and x represents a whole number of 1 to 4, the carbon black includes carbon black A having nitrogen adsorption specific surface area of less than 50 m2/g in content of from 5 to 55 parts by mass and carbon black B having nitrogen adsorption specific surface area of 50 m2/g or greater in content of from 0 to 30 parts by mass.
Abstract:
The present invention provides a curable organopolysiloxane composition capable of producing a cured article that can be used as a transducer and provided with excellent mechanical characteristics and/or electrical characteristics. The present invention also relates to a novel curable organopolysiloxane composition for transducer use comprising a curable organopolysiloxane composition, dielectric inorganic fine particles having a specific dielectric constant of greater than or equal to 10, and fine particles having a specific dielectric constant of less than 10.
Abstract:
Provided are a flame retardant which is good in dispersibility in an organic polymeric material, and does not lower, even after mixed with an organic polymeric material, material properties thereof; a flame retardant composition; and a shaped body. The flame retardant of the present invention includes magnesium hydroxide particles subjected to a surface treatment, the particles satisfying the following (A) to (D): (A) an average particle size is 2 μm or less according to a laser diffraction method; (B) a BET specific surface area is 3 to 15 m2/g; (C) a degree of mono-dispersion is 50% or more, the degree of mono-dispersion being represented by the following equation: Degree of mono-dispersion (%)=(average primary particle size [μm] of particles according to SEM observation/average particle size [μm] of particles according to laser diffraction method)×100; and, (D) just after 1 mL of a 0.1 M solution of nitric acid is dropwise added at a dropping rate of 0.1 mL/minute to a suspension obtained by adding 1.0 g of the flame retardant to 100 mL of an aqueous mixed solution containing 0.1% by weight of each of a wetting agent and an electrolyte, pH of the suspension is 9.0 or less according to a potentiometric titration.