Abstract:
In the permanent magnet motor of the present invention, where P is an integer not smaller than one, the number of magnetic poles of a rotor (22) is set to 2P, and the number of salient poles of a stator field core (21) is set to 3P. The salient pole section (21a) of each stator field core (21) is provided with two supplemental grooves (24). A salient pole magnetic interpolar angle is 4.theta., such that two supplemental grooves (24) of each salient pole section (21a) are arranged in positions at angles of .theta. and 3.theta. with respect to the center of a winding slot (27) in the circumferential direction of the rotor. With this structure, a fundamental wave component of a clogging torque is removed and a permanent magnet motor having a low clogging torque is provided.
Abstract:
A tandem press system for the high speed manufacture of rotor cores and stator cores of electric motors. The tandem press system includes a rotor press and a stator press arranged in series for stamping out laminations from a web of stock material and pre-assembling them into rotor cores and stator cores, respectively. Structure is provided between the rotor and stator press to maintain control of the web and provide a substantial barrier to transmission of vibrations in the web to the stator press. The rotor and stator presses are capable of shifting from stamping one type of lamination to stamping another type of lamination without any interruption in the operation of the presses.
Abstract:
A reluctance type synchronous motor comprises: a stator with a plurality of slots placed at an even pitch angle wherein stored inside each slot is a stator winding for creating stator magnetic poles with a predetermined phase alternating current being supplied thereto. A rotor sustained by a shaft and changing magnetic reluctance in its circumferential direction by inclusion inside of a plurality of magnetic isolating portions creates desired magnetic poles. At least one of the central angles between magnetic poles created at the rotor is shifted from the other central angles so that torque ripples during rotation can be reduced.
Abstract:
A motor rotor or stator core is formed of a plurality of stacked generally circular laminations. The stack defines at least one inner lamination having laminations positioned adjacent to both sides of the lamination. Each lamination has a predetermined number of circumferentially equally spaced slots or bar elements extending radially at about an edge thereof. The inner laminations include at least one interlocking projection formed in one of the surfaces at a predetermined radial distance from the center of the lamination. The laminations further define at least one projection receiving region formed therein to engage the projection when the laminations arc in the stacked formation. The projection receiving region is spaced from the interlocking projection by an angle .phi. that is a whole number multiple of .beta., where .beta. is an angle defined as a ratio of 360 degrees to the number of slots. A method for making the stacked core is also disclosed.
Abstract:
A dynamoelectric machine constructed for speed and accuracy of manufacturing has a stator core constructed of 90.degree. symmetrical stator laminations and the windings have differing numbers of poles which overlap in slots of the stator core are wound of the core formed by the laminations in unique fashion. The rotor bars of the machine are skewed to optimize performance of the machine when in the form of a single phase induction motor. Magnet wire leads of the windings are connected directly to terminals on a plug and terminal assembly which is formed for positive location on an end frame of the machine without welding or other fastening to the end frame. The end frames of the machine and stator laminations forming the stator core are formed so as to increase the precision of the final position of the stator relative to the rotor assembly of the dynamoelectric machine. The end frames are constructed for grounding without the use of fasteners or wire. The engagement of the end frames with the stator core is employed as the basis for alignment of the machine components.
Abstract:
The invention concerns an improved system for windshield wipers in vehicles. An induction motor is used, in which speed is accurately controlled by controlling frequency of power supplied to the motor. The induction motor may be of the consequent-pole type, which ordinarily does not produce sufficient torque. Addition of (a) auxiliary tooth slotting and (b) skew has raised the torque produced to acceptable levels. The invention includes a control system, which senses excess load on the motor, which occurs as the windshield dries, and reduces motor speed, subject to a minimum, in response.
Abstract:
A motor has a stator and a rotor that is formed of two rotor parts fitted on a rotor shaft in a fashion preventing the rotor from rotating relative to the rotor shaft. The rotor parts carry permanent magnets arranged with a fixed pitch angle over their outer peripheral faces. The rotor shaft has a single key for engaging with both an engagement groove of the first rotor and an engagement groove of the second rotor. The engagement groove of each steel plate forming the rotor parts is formed in a position shifted 1/2 of the skew angle from the pole center of a given one of the permanent magnets. The steel plates of the first rotor part and the steel plates of the second rotor part face in opposite directions when fitted to the key of the rotor shaft, thereby providing the predetermined skew angle between the two rotor parts.
Abstract:
A motor includes a stationary assembly and a rotatable assembly in magnetic coupling relation thereto. The stationary assembly includes a winding, the rotation of the rotatable assembly inducing a back EMF in the winding. A power supply for supplying a voltage across the winding drives a current through the winding. A back EMF sensor connected to the winding generates a back EMF signal representative of the back EMF induced in the winding during periods of time when the voltage is being supplied across the winding. An inverter connected between the power supply and the winding commutates the winding as a function of the back EMF signal, whereby the rotatable assembly rotates. A method of operating the motor and a control circuit for the motor employ the back emf induced in the winding during periods when the voltage is being applied to the winding by the power supply.
Abstract:
A P.M. d.c. motor which may utilize "brushless" commutation. The motor includes a stator assembly with a plurality of upstanding discrete spaced-apart core components formed in a circular locus generally parallel with the motor axis. Each core component includes a relatively lengthy winding association region and extending therefrom a pole piece region providing a flux interaction surface. A field winding mounted upon a bobbin is positioned over the core component at the winding association region and when excited, generates electromagnetic flux at the flux interaction surface. A permanent magnet component is carried by a rotor such that its interaction surface is adjacent to that at the pole piece region, and is spaced therefrom to define a flux working gap at a desirably lengthy working gap radius from the motor axis.
Abstract:
A tandem press system for the high speed manufacture of rotor cores and stator cores of electric motors. The tandem press system includes a rotor press and a stator press arranged in series for stamping out laminations from a web of stock material and pre-assembling them into rotor cores and stator cores, respectively. Structure is provided between the rotor and stator press to maintain control of the web and provide a substantial barrier to transmission of vibrations in the web to the stator press. The rotor and stator presses are capable of shifting from stamping one type of lamination to stamping another type of lamination without any interruption in the operation of the presses.