Abstract:
Confidence in a physiological parameter is measured from physiological data responsive to the intensity of multiple wavelengths of optical radiation after tissue attenuation. The physiological parameter is estimated based upon the physiological data. Reference data clusters are stored according to known values of the physiological parameter. At least one of the data clusters is selected according to the estimated physiological parameter. The confidence measure is determined from a comparison of the selected data clusters and the physiological data.
Abstract:
Embodiments of the present disclosure include an emitter driver configured to be capable of addressing substantially 2N nodes with N cable conductors configured to carry activation instructions from a processor. In an embodiment, an address controller outputs an activation instruction to a latch decoder configured to supply switch controls to activate particular LEDs of a light source.
Abstract:
A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.
Abstract:
A patient monitoring system includes an inflatable cuff, a gas reservoir containing a compressed gas, and a sensor. When the inflatable cuff is coupled to a wearer, the gas reservoir supplies gas to the inflatable cuff to inflate the inflatable cuff via gas pathways. As the inflatable cuff inflates, a patient monitor can receive blood pressure data from the sensor and use the blood pressure data to determine the blood pressure of the wearer. The patient monitor can also receive blood pressure data during deflation of the inflatable cuff to determine the blood pressure of the wearer.
Abstract:
Embodiments of the present disclosure include a handheld multi-parameter patient monitor capable of determining multiple physiological parameters from the output of a light sensitive detector capable of detecting light attenuated by body tissue. For example, in an embodiment, the monitor is capable of advantageously and accurately displaying one or more of pulse rate, plethysmograph data, perfusion quality, signal confidence, and values of blood constituents in body tissue, including for example, arterial carbon monoxide saturation (“HbCO”), methemoglobin saturation (“HbMet”), total hemoglobin (“Hbt”), arterial oxygen saturation (“SpO2”), fractional arterial oxygen saturation (“SpaO2”), or the like. In an embodiment, the monitor displays a line associated with a patient wellness level.
Abstract:
This invention provides devices, compositions and methods for determining the concentration of one or more metabolites or analytes in a biological sample, including cells, tissues, organs, organisms, and biological fluids. In particular, this invention provides materials, apparatuses, and methods for several non-invasive techniques for the determination of in vivo blood glucose concentration levels based upon the in vivo measurement of one or more biologically active molecules found in skin.
Abstract:
This disclosure describes, among other features, systems and methods for customizing calibration curves, parameter algorithms, and the like to individual users. An initial calibration curve generated based on a population can be used as a starting point in an algorithm for measuring a physiological parameter such as glucose. The measurement algorithm can determine one or more initial measurement values for a user based on the initial calibration curve. In certain embodiments, one or more alternative measurements, such as invasive or minimally invasive measurements, can periodically or sporadically be input into the measurement algorithm. The algorithm can use the alternative measurements to adapt the calibration curve to the individual. As a result, measurements for the individual can more accurately reflect the individual's actual parameter values.
Abstract:
A system is disclosed for detecting and calculating the level of ambient and/or environmental noise, such as electromagnetic interference generated by electric power lines, ambient lights, light dimmers, television or computer displays, power supplies or transformers, and medical equipment. In some embodiments, the system performs frequency analysis on the interference signal detected by light photodetectors and determines the power of the interference signal concentrated in the analyzed frequency bands. The worst-case interference level can be determined by selecting the maximum from the computed power values. In some embodiments, the determined interference signal power can be compared with the noise tolerance of a patient monitoring system configured to reliably and non-invasively detect physiological parameters of a user. The results of the comparison can be presented to the user audio-visually. In some embodiments, the system can be used to perform spot check measurements of electromagnetic interference.
Abstract:
A patient monitoring system can display one or more configurable health monitors on a configurable user interface. The health indicators are configured to display a physiological signal from a patient. The patient monitoring system can calculate ranges of values for the health indicator that correspond to a status of the patient. The health indicators can display different outputs based on the value of the physiological signal.
Abstract:
A physiological sensor has light emitting sources, each activated by addressing at least one row and at least one column of an electrical grid. The light emitting sources are capable of transmitting light of multiple wavelengths and a detector is responsive to the transmitted light after attenuation by body tissue.