Abstract:
A processing system may include multiple selectable processing paths for processing an analog signal in order to reduce noise and increase dynamic range. Techniques are employed to transition between processing paths and calibrate operational parameters of the two paths in order to reduce or eliminate artifacts caused by switching between processing paths.
Abstract:
A method may include adaptively generating an anti-noise signal from filtering a reference microphone signal with an adaptive filter in conformity with an error microphone signal and the reference microphone signal. The method may also include adjusting the response of the adaptive filter by combining injected noise with the reference microphone signal and receiving the injected noise by a copy of the adaptive filter so that the response of the copy is controlled by the adaptive filter adapting to cancel a combination of the ambient audio sounds and the injected noise and controlling the response of the adaptive filter with the coefficients adapted in the copy, whereby the injected noise is not present in the anti-noise signal and wherein each of a sample rate of the copy and a rate of adapting of the adaptive filter is significantly less than a sample rate of the adaptive filter.
Abstract:
The system and method disclose for the controlling of motor switching. The system includes a controller unit having a control signal generator, a memory device, a processing unit, a signal acquisition device, and an analog-to-digital converter. A power stage has a plurality of switches and receives a control signal from the control signal generator and a power signal from a power source. The power stage drives two windings of the set of three stator windings with a multi-state pulse and leaves one stator of the three stator windings undriven. The processing unit acquires a demodulated measured voltage on the undriven winding. The processing unit communicates with the power stage to change which two windings of the three stator windings are driven when the demodulated measured voltage surpasses a threshold.
Abstract:
The system discloses structure for synchronizing sequential phase switching in driving a set of stator windings of a multi-phase sensorless brushless permanent magnet DC motor. A drive voltage drives a plurality of the stator windings thereby producing a magnetic field. On an undriven stator winding among the stator windings, a voltage induced by the magnetic field is sampled. The induced voltage changes as a function of a magnetic rotor transitioning across a plurality of angular positions. A first value corresponding to the sampled voltage induced on the currentless winding is compared with a commutation threshold to determine a proper commutation point. The system is switched to a next drive configuration of the sequence when the first value surpasses the threshold.
Abstract:
A line-frequency determining circuit for coupling to the output of a thyristor-switched dimmer that determines a line-frequency of an AC power source that supplies an input to the thyristor-controlled dimmer permits accurate control of periodic probing of the dimmer output. The probing is performed to predict zero-cross times of the AC power source that, in turn, are used to determine a dimming control value of the thyristor-switched dimmer. A minimum conductance is applied across the output of the dimmer during the probing intervals that begin at the turn-on time of the dimmer and last until enough information has been gathered to correctly predict a next zero crossing of the AC line voltage that supplies the input of the dimmer. The probing can be performed at intervals of an odd number of half-cycles of the AC line frequency so that internal dimmer timer operation is not affected by DC offset.
Abstract:
In accordance with systems and methods of the present disclosure, an audio device may include an electrical terminal, an audio circuit, and a transducer load detection circuit. The electrical terminal may couple a transducer device to the audio device. The audio circuit may generate an analog audio signal, wherein the analog audio signal is coupled to the electrical terminal. The transducer load detection circuit may detect a load impedance of the transducer device when the transducer device is coupled to the audio device from characteristics measured at the electrical terminal.
Abstract:
In accordance with embodiments of the present disclosure, systems and methods may include a switch coupled at its gate terminal to an input signal voltage, the input signal voltage for controlling a gate voltage of a gate terminal of a driver device coupled at its non-gate terminals between a rail voltage and an output node. The systems and methods may also include a diode having a first terminal and a second terminal, the diode coupled to a non-gate terminal of the switch such that when the switch is enabled, the first terminal is electrically coupled to the gate terminal of the driver device and the second terminal is electrically coupled to the output node.
Abstract:
According to systems and methods of this disclosure, a controller may be configured to: operate in a first compatibility mode of operation, determine from an input signal of the lamp assembly during operation in the first compatibility mode whether the first compatibility mode of operation provides compatibility between the lamp assembly and a power infrastructure to which it is coupled, select the first compatibility mode of operation from a plurality of modes of operation as a compatibility mode responsive to determining that the first compatibility mode of operation provides compatibility between the lamp assembly and a power infrastructure to which it is coupled, and select a second compatibility mode of operation from the plurality of modes of operation as the compatibility mode responsive to determining that the first compatibility mode of operation does not provide compatibility between the lamp assembly and the power infrastructure to which it is coupled.
Abstract:
A bipolar junction transistor (BJT) may be used to generate a supply voltage for operating a controller, such as a lighting controller for a LED-based light bulb. A base of the BJT may receive current generated from the supply voltage to control operation of the BJT. Although the base of the BJT would be at a lower voltage than the emitter, a base drive circuit may be coupled between the emitter and the base of the BJT to increase the voltage. As one example, the base drive circuit may be a charge pump. In another example, the BJT may function as its own charge pump. In yet another example, a positive and a negative base current of the BJT may be independently controlled to regulate an output supply voltage VDD from the BJT.
Abstract:
In accordance with these and other embodiments of the present disclosure, an apparatus and a method may include receiving a first input configured to indicate an output voltage of an output node of a switched output stage comprising a pull-down driver device coupled at its non-gate terminals between a ground voltage and the output node and a pull-up driver device coupled at its non-gate terminals between a supply voltage and the output node. The method may also include receiving a second input configured to indicate a gate voltage of a gate terminal of a first one of the pull-up driver device and the pull-down driver device. The method may further include detecting direction of an output current flowing into or out of the output node based on the first input and the second input.