摘要:
A phase shifting mask can be used with exposure lights of two different wavelengths. The depth of the phase shifting layer is calculated and fabricated such that it shifts a first exposure light about 180.degree. and a second exposure light about 180.degree..
摘要:
A method for forming an in-situ doped amorphous or polycrystalline silicon thin film on a substrate is provided. The method includes placing the substrate in a reaction chamber of a CVD reactor and introducing a silicon gas species into the reaction chamber. The flow of the silicon gas species is continued for a time period sufficient to dehydrate the substrate and form a thin layer of silicon. Following formation of the thin layer of silicon, a dopant gas species is introduced into the reaction chamber and continued with the flow of the silicon gas species to form the doped silicon thin film. In an illustrative embodiment a phosphorus doped amorphous silicon thin film for a cell plate of a semiconductor capacitor is formed in a LPCVD reactor.
摘要:
An improved method of fabricating a phase shifting mask suitable for semiconductor manufacture includes the steps of identifying phase conflict areas in a desired mask pattern and forming phase shift bands in the phase conflict areas. Phase conflict areas occur in transparent areas of the mask pattern which are in close proximity to one another and which have the same phase. More specifically, the method of the invention includes the steps of: depositing an opaque layer (i.e., chrome) on a transparent substrate, etching openings in the opaque layer to form a pattern of transparent areas and opaque areas, connecting adjacent transparent areas together in the phase conflict areas, and forming phase shift areas in every other transparent area and in the connecting areas.
摘要:
Active regions on a semiconductor substrate are isolated, whereby an Oxide/Nitride/Oxide sandwich is disposed on a substrate, and a polysilicon layer and a nitride layer are also disposed thereon. The Oxide/Nitride/Oxide sandwich substantially inhibits "pitting" of the substrate when the polysilicon layer is removed.Method of preventing "pitting" of an underlying substrate through the use of a nitride (or other HF-resistant material) disposed beneath the polysilicon layer of a Poly Buffered LOCOS stack.
摘要:
A selective etching and chemical mechanical planarization process for the formation of self-aligned gate and focus ring structures surrounding an electron emission tip for use in field emission displays in which the emission tip is i) optionally sharpened through oxidation, ii) deposited with a first conformal layer, iii) deposited with a conductive material layer, iv) deposited with a second conformal insulating layer, v) deposited with a focus electrode ring material layer, vi) optionally deposited with a buffering material, vii) planarized with a chemical mechanical planarization (CMP) step, to expose a portion of the second conformal layer, viii) etched to form a self-aligned gate and focus ring, and thereby expose the emitter tip, afterwhich xi) the emitter tip may be coated with a low work function material.
摘要:
Fabrication of spacer supports for use in flat panel displays through a process which involves 1) depositing an insulating material on an electrode plate, 2) optionally, patterning a reflective material superjacent the insulating material, 3) irradiating the electrode plate, and thereby removing the exposed insulating material, 4) optionally, removing the reflective material, and thereby exposing the remaining insulative material which will serve as the spacer supports, after which the plate can be aligned with a complementary electrode plate, and a vacuum formed therebetween.
摘要:
Fabrication of spacer supports for use in field emitter displays through a process which involves 1) forming a mold for the spacers in a substrate through the use of micro-saw technology, 2) filling the mold with a material that is selectively etchable with respect to the mold, 3) optionally, planarizing the excess material to the level of the mold using chemical mechanical planarization, 4) attaching the filled mold to one of the electrode plates of the field emitter display, and 5) etching away (removing) the mold, after which 6) the plate can be aligned with its complementary electrode plate, and 7) a vacuum formed.
摘要:
A selective etching and chemical mechanical planarization process for the formation of self-aligned gate and focus ring structures surrounding an electron emission tip for use in field emission displays in which the emission tip is i) optionally sharpened through oxidation, ii) deposited with a first conformal layer, iii) deposited with a conductive material layer, iv) deposited with a second conformal insulating layer, v) deposited with a focus electrode ring material layer, vi) optionally deposited with a buffering material, vii) planarized with a chemical mechanical planarization (CMP) step, to expose a portion of the second conformal layer, viii) etched to form a self-aligned gate and focus ring, and thereby expose the emitter tip, afterwhich xi) the emitter tip may be coated with a low work function material.
摘要:
The present invention provides an attenuated phase shift mask (“APSM”) that, in each embodiment, includes completely transmissive regions sized and shaped to define desired semiconductor device features, slightly attenuated regions at the edges of the completely transmissive regions corresponding to isolated device features, highly attenuated regions at the edges of completely transmissive regions corresponding to closely spaced or nested device features, and completely opaque areas where it is desirable to block transmission of all radiation through the APSM. The present invention further provides methods for fabricating the APSMs according to the present invention.
摘要:
The invention includes a semiconductor construction having a wire bonding region associated with a metal-containing layer, and having radiation-imageable material over the metal-containing layer. The radiation-imageable material can be configured as a multi-level pattern having a first topographical region with a first elevational height and a second topographical region with a second elevational height above the first elevational height. The second topographical region can be laterally displaced from the bonding region by at least a lateral width of the first topographical region, with said lateral width being at least about 10 microns. Additionally, or alternatively, the elevational height of the second topographical region can be at least about 2 microns above the elevational height of the first topographical region. The invention also includes a method of forming wire bonds for semiconductor constructions in which a multi-level pattern is photolithographically formed in a radiation-imageable material (such as, for example, polyimide).