Abstract:
The instant invention concerns Francisella bacteria mediated degradation of alkaline phosphatase (AP). Detection of AP degradation may be used to determine the presence of Francisella bacteria in a sample. Furthermore, methods for identifying and treating Francisella infections by detecting AP degradation are described. Methods of the invention also concerns methods for treating Francisella infection by inhibiting AP degradation.
Abstract:
A system, method and apparatus for transferring heat are disclosed. They make use of the first receptacle having an inlet for ingress of the first liquid, such as sewage, and an outlet for egress of the first liquid. Also provided is a second receptacle having an inlet for ingress of the second liquid, such as exhausted heated water from an air conditioning or cooling unit, and an outlet for egress of the second liquid. The second receptacle comprises a portion located in a proximity of the first receptacle. The first and second receptacles are arranged such that they allow a quantity of heat to transfer from the second liquid to the first liquid. The apparatus may be configured for inline connection to a sewerage main.
Abstract:
The present invention provides method of forming a gate dielectric that includes forming a metal source layer (210) comprising a metal and at least one nonmetallic element over a substrate (110). The metal source layer (210) is formed having a composition rich in the metal. A dielectric layer (310) comprising the metal is formed over the metal source layer (210).
Abstract:
Concurrently forming different metal gate transistors having respective work functions is disclosed. In one example, a metal carbide, which has a relatively low work function, is formed over a semiconductor substrate. Oxygen and/or nitrogen are then added to the metal carbide in a second region to establish a second work function in the second region, where the metal carbide itself establishes a first work function in a first region. One or more first metal gate transistor types are then formed in the first region and one or more second metal gate transistor types are formed in the second region.
Abstract:
The present invention provides, in one embodiment, a gate structure (100). The gate structure comprises a gate dielectric (105) and a gate (110). The gate dielectric includes a refractory metal and is located over a semiconductor substrate (115). The semiconductor substrate has a conduction band and a valence band. The gate is located over the gate dielectric and includes the refractory metal. The gate has a work function aligned toward the conduction band or the valence band. Other embodiments include an alternative gate structure (200), a method of forming a gate structure (300) for a semiconductor device (301) and a dual gate integrated circuit (400).
Abstract:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that form metal silicide gates and mitigate formation of silicide region defects near channel regions. A dielectric layer is formed over a semiconductor device (306). Polysilicon is deposited on the dielectric layer to form a gate electrode layer (308) and a patterning operation is then performed to form gate structures (310). Source/drain regions are formed (320) and the gate structures are tuned to obtain a selected work function (324). A metal is then selectively deposited on only the gate structures (328) and a thermal process is performed that reacts the deposited metal with polysilicon of the gate layer to obtain a metal suicide material (330).
Abstract:
The present invention facilitates semiconductor fabrication by providing methods of fabrication that selectively form high-k dielectric layers within NMOS regions. An I/O dielectric layer is formed in core and I/O regions of a semiconductor device (506). The I/O dielectric layer is removed (508) from the core region of the device. A core dielectric layer is formed in the core region (510). A barrier layer is deposited and patterned to expose the NMOS devices of the core region (512). The core dielectric layer is removed from the core NMOS devices (514). A high-k dielectric layer is formed (514) over the core and I/O regions. Then, the high-k dielectric layer is removed (512) from PMOS regions/devices of the core region and the NMOS and PMOS regions/devices of the I/O region.
Abstract:
Transistors and fabrication methods are presented in which a semiconductor body is deposited in a cavity of a temporary form structure above a semiconductor starting structure. The formed semiconductor body can be epitaxial silicon deposited in the form cavity over a silicon substrate, and includes three body portions, two of which are doped to form source/drains, and the other forming a transistor channel that overlies the starting structure. A gate structure is formed along one or more sides of the channel body portion to create a MOS transistor.
Abstract:
A method for improving high-κ gate dielectric film (104) properties. The high-κ film (104) is subjected to a two step anneal sequence. The first anneal is performed in a reducing ambient (106) with low partial pressure of oxidizer to promote film relaxation and increase by-product diffusion and desorption. The second anneal is performed in an oxidizing ambient (108) with a low partial pressure of reducer to remove defects and impurities.