Abstract:
A bandpass filter comprises a first capacitor, a second capacitor, a third capacitor and at least two resonators. The first and second capacitors are coupled in parallel with each other, and each of the first and second capacitors includes an input. The third capacitor is coupled between the first capacitor and the second capacitor at their respective inputs. The at least two resonators are coupled in parallel with the first capacitor and the second capacitor and are positioned adjacent to each other at a distance such that the at least one component of the resonators are electromagnetically coupled together to provide three (3) transmission zeros.
Abstract:
A multi-chip module includes a chip stack package including at least one pair of stacked dies, the dies having overlapping opposing faces, and at least one capacitive proximity communication (CPC) interconnect between the pair of stacked dies. The CPC interconnect includes a first capacitor plate at a first one of the overlapping opposing faces and a second capacitor plate at a second one of the overlapping opposing faces spaced from and aligned with the first capacitor plate. The CPC interconnect further includes an inductive element connected in series with the first capacitor plate and second capacitor plate, wherein the capacitor plates form part of a capacitor and the capacitor cooperates with the inductor element to form a LC circuit having a resonant frequency.
Abstract:
A semiconductor device for transmitting a radio frequency signal along a signal line includes a signal line that extends along a principal axis. On one side of the signal line is a first dielectric, and on the opposite side of the signal line is a second dielectric. First and second ground lines are proximate to the first and second dielectrics, respectively, and the ground lines are approximately parallel to the signal line. The device has a transverse cross-section that varies along the principal axis.
Abstract:
A method and system for de-embedding an on-wafer device is disclosed. The method comprises representing the intrinsic characteristics of a test structure using a set of ABCD matrix components; determining the intrinsic characteristics arising from the test structure; and using the determined intrinsic characteristics of the test structure to produce a set of parameters representative of the intrinsic characteristics of a device-under-test (“DUT”).
Abstract:
An inductor in an integrated circuit comprises a conductive trace disposed over an insulating layer which overlies a semiconductor substrate of a first conductivity type and at least two deep wells of opposite conductivity type in the substrate underneath the track. In another embodiment, an inductor in an integrated circuit comprises a conductive trace disposed over an insulating layer which overlies a semiconductor substrate of a first conductivity type; a shallow trench isolation region formed in the substrate underneath the trace; and at least two deep wells of opposite conductivity type in the substrate underneath the shallow trench isolation region. The present invention also includes methods of manufacturing the aforementioned inductors.
Abstract:
A method of manufacturing a semiconductor device with raised source/drain. This method eliminates the problem which is often experienced when the shallow junction technique is applied, in which over-etching of the source/drain region during the contact etching and the salicide process can lead to current leakages. The improved method includes the steps of forming a buffer conductive blocks on the source/drain regions which increase the thickness of source/drain regions. A related semiconductor structure made by the method has a plurality of bi-flange shape side wall spacers by which the semiconductor structure not only elevates the doped regions, it also provides an improved capability to suppress the electric bridges between the gate electrode and source/drain regions, respectively.