摘要:
In the course of forming a resistor in the back end of an integrated circuit, an intermediate dielectric layer is deposited and a trench etched through it and into a lower dielectric layer by a controllable amount, so that the top of a resistor layer deposited in the trench is close in height to the top of the lower dielectric layer; the trench is filled and the resistor layer outside the trench is removed, after which a second dielectric layer is deposited. Vias passing through the second dielectric layer to contact the resistor then have the same depth as vias contacting metal interconnects in the lower dielectric layer. A tri-layer resistor structure is employed in which the resistive film is sandwiched between two protective layers that block diffusion between the resistor and BEOL ILD layers.
摘要:
A BEOL thin-film resistor adapted for flexible integration rests on a first layer of ILD. The thickness of the first layer of ILD and the resistor thickness combine to match the nominal design thickness of vias in the layer of concern. A second layer of ILD matches the resistor thickness and is planarized to the top surface of the resistor. A third layer of ILD has a thickness equal to the nominal value of the interconnections on this layer. Dual damascene interconnection apertures and apertures for making contact with the resistor are formed simultaneously, with the etch stop upper cap layer in the resistor protecting the resistive layer while the vias in the dual damascene apertures are formed.
摘要:
A method to integrate MIM capacitors into conductive interconnect levels, with low cost impact, and high yield, reliability and performance than existing integration methods is provided. This is accomplished by recessing a prior level dielectric for MIM capacitor level alignment followed by deposition and patterning of the MIM capacitor films. Specifically, the method includes providing a substrate including a wiring level, the wiring level comprising at least one conductive interconnect formed in a dielectric layer; selectively removing a portion of the dielectric layer to recess the dielectric layer below an upper surface of the at least one conductive interconnect; forming a dielectric stack upon the at least one conductive interconnect and the recessed dielectric layer; and forming a metal-insulator-metal (MIM) capacitor on the dielectric stack. The MIM capacitor includes a bottom plate electrode, a dielectric and a top plate electrode. The bottom and top plate electrodes can comprise the same or different conductive metal.
摘要:
A chip capacitor and interconnecting wiring is described incorporating a metal insulator metal (MIM) capacitor, tapered vias and vias coupled to one or both of the top and bottom electrodes of the capacitor in an integrated circuit. A design structure tangibly embodied in a machine readable medium is described incorporating computer readable code defining a MIM capacitor, tapered vias, vias and wiring levels in an integrated circuit.
摘要:
A semiconductor structure and methods for forming the same. The structure includes (a) a substrate; (b) a first device and a second device each being on the substrate; (c) a device cap dielectric layer on the first and second devices and the substrate, wherein the device cap dielectric layer comprises a device cap dielectric material; (d) a first dielectric layer on top of the device cap dielectric layer, wherein the first dielectric layer comprises a first dielectric material; (e) a second dielectric layer on top of the first dielectric layer; and (f) a first electrically conductive line and a second electrically conductive line each residing in the first and second dielectric layers. The first dielectric layer physically separates the first and second electrically conductive lines from the device cap dielectric layer. A dielectric constant of the first dielectric material is less than that of the device cap dielectric material.
摘要:
A semiconductor structure and methods for forming the same. The structure includes (a) a substrate; (b) a first device and a second device each being on the substrate; (c) a device cap dielectric layer on the first and second devices and the substrate, wherein the device cap dielectric layer comprises a device cap dielectric material; (d) a first dielectric layer on top of the device cap dielectric layer, wherein the first dielectric layer comprises a first dielectric material; (e) a second dielectric layer on top of the first dielectric layer; and (f) a first electrically conductive line and a second electrically conductive line each residing in the first and second dielectric layers. The first dielectric layer physically separates the first and second electrically conductive lines from the device cap dielectric layer. A dielectric constant of the first dielectric material is less than that of the device cap dielectric material.
摘要:
A method of forming a semiconductor structure, and the semiconductor structure so formed, wherein a transmission line, such as an inductor, is formed on a planar level above the surface of a last metal wiring level.
摘要:
A Metal Insulator-Metal (MIM) capacitor is formed on a semiconductor substrate with a base comprising a semiconductor substrate having a top surface and including regions formed in the surface selected from a Shallow Trench Isolation (STI) region and a doped well having exterior surfaces coplanar with the semiconductor substrate. An ancillary MIM capacitor plate is selected either a lower electrode formed on the STI region in the semiconductor substrate or a doped well formed in the top surface of the semiconductor substrate. A capacitor HiK dielectric layer is formed on or above the MIM capacitor lower plate. A second MIM capacitor plate is formed on the HiK dielectric layer above the MIM capacitor lower plate.
摘要:
A method of forming a semiconductor structure, and the semiconductor structure so formed, wherein a transmission line, such as an inductor, is formed on a planar level above the surface of a last metal wiring level.
摘要:
A heterojunction bipolar transistor (HBT) structure, method of manufacturing the same and design structure thereof are provided. The HBT structure includes a semiconductor substrate having a sub-collector region therein. The HBT structure further includes a collector region overlying a portion of the sub-collector region. The HBT structure further includes an intrinsic base layer overlying at least a portion of the collector region. The HBT structure further includes an extrinsic base layer adjacent to and electrically connected to the intrinsic base layer. The HBT structure further includes an isolation region extending vertically between the extrinsic base layer and the sub-collector region. The HBT structure further includes an emitter overlying a portion of the intrinsic base layer. The HBT structure further includes a collector contact electrically connected to the sub-collector region. The collector contact advantageously extends through at least a portion of the extrinsic base layer.