摘要:
Compositions for the treatment of incontinence are disclosed. More particularly, compositions of human umbilical tissue-derived cells and a carrier are disclosed. The compositions are useful in the treatment urinary and fecal incontinence.
摘要:
Cells derived from postpartum umbilicus and placenta are disclosed. Pharmaceutical compositions, devices and methods for the regeneration or repair of ocular tissue using the postpartum-derived cells are also disclosed.
摘要:
Cells derived from postpartum tissue and methods for their isolation and induction to differentiate to cells of a chondrogenic or osteogenic phenotype are provided by the invention. The invention further provides cultures and compositions of the postpartum-derived cells and products related thereto. The postpartum-derived cells of the invention and products related thereto have a plethora of uses, including but not limited to research, diagnostic, and therapeutic applications, for example, in the treatment of bone and cartilage conditions.
摘要:
Cells derived from postpartum tissue and methods for their isolation and induction to differentiate to cells of a chondrogenic or osteogenic phenotype are provided by the invention. The invention further provides cultures and compositions of the postpartum-derived cells and products related thereto. The postpartum-derived cells of the invention and products related thereto have a plethora of uses, including but not limited to research, diagnostic, and therapeutic applications, for example, in the treatment of bone and cartilage conditions.
摘要:
The present invention provides a composition including an isolated or recombinant peptide component that has osteogenic cell proliferative activity. The peptide, which promotes proliferation of osteoblasts, is useful for treatment of fractures, as a filler in deficient sites of bone, for inhibition of decrease in bone substance related to osteoporosis and periodontic diseases, and for prevention of fractures associated with osteoporosis and rheumatoid arthritis. The peptide, or cells that have been genetically engineered to produce the peptide, can be combined with a bone-compatible matrix to facilitate slow release of the peptide to a treatment site and/or provide a structure for developing bone.
摘要:
Cells derived from postpartum umbilicus and placenta are disclosed. Pharmaceutical compositions, devices and methods for the regeneration or repair of neural tissue using the postpartum-derived cells are also disclosed.
摘要:
There is provided a novel vascular endothelial growth factor, herein designated VEGF-X, in addition to the nucleic acid molecule encoding it, a host cell transformed with said vector and compounds which inhibit or enhance angiogenesis. Also provided is the sequence of a CUB domain present in the sequence of VEGF-X which domain itself prevents angiogenesis and which is used to treat diseases associated with inappropriate vascularisation or angiogenesis.
摘要:
Cells derived from postpartum tissue and products thereof having the potential to support cells of and/or differentiate to cells of a soft tissue lineage, and methods of preparation and use of those postpartum tissue-derived cells, are provided by the invention. The invention also provides methods for the use of such postpartum-derived cells and products related thereto in therapies for conditions of soft tissue.
摘要:
Cells derived from postpartum tissue such as the umbilical cord and placenta, and methods for their use to regenerate, repair, and improve neural tissue, and to improve behavior and neurological function in stroke patients are disclosed.
摘要:
There is provided a novel use for vascular endothelial growth factor, herein designated VEGF-X, and a CUB domain present in the sequence of VEGF-X, which enhance smooth muscle cell proliferation and can be used to treat diseases associated with reduced smooth muscle cell proliferation. VEGF-X, and a CUB domain can also be used in tissue engineering applications to increase the number of smooth muscle cells within specific tissue to restore that tissue function or architecture. Screening methods for identifying inhibitors of VEGF-X biological activity are also disclosed and these inhibitors include neutralizing VEGF-X antibodies, antisense VEGF-X sequences or non-protein antagonists competing with VEGF-X biological activity. Also provided are therapeutic methods for treating disorders associated with smooth muscle cells hyperproliferation and methods of diagnosis a pathological condition or susceptibility to a pathological condition associated with smooth muscle cell hyperproliferation.