Abstract:
A vehicle collision detection system may be configured to coordinate with collision detection systems of other vehicles. The coordination may comprise sharing sensor data with other vehicles, receiving sensor information from other vehicles, using sensor information to generate a collision detection model, sharing the collision detection model with other vehicles, receiving a collision detection model from other vehicles, and the like. In some embodiments, vehicles may coordinate sensor operation to form a bistatic and/or multistatic sensor configuration, in which a detection signal generated at a first land vehicle is detected at a sensing system at a second land vehicle.
Abstract:
Embodiments include a gain system and method. The system includes a gain medium with a plurality of plasmonic apparatus. Each plasmonic apparatus includes a substrate having a first plasmonic surface, a plasmonic nanoparticle having a second plasmonic surface, and a dielectric-filled gap between the first plasmonic surface and the second plasmonic surface. A plasmonic cavity is created by an assembly of the first plasmonic surface, the second plasmonic surface, and the dielectric-filled gap, and has a first fundamental wavelength λ1 and second fundamental wavelength λ2. Fluorescent particles are located in the dielectric-filled gap. Each fluorescent particle has an absorption spectrum at the first fundamental wavelength λ1 and an emission spectrum at the second fundamental wavelength λ2. An excitation applied to the gain medium at the first fundamental wavelength λ1 produces an amplified electromagnetic wave emission at the second resonant wavelength λ2.
Abstract:
The present disclosure provides systems and methods associated with mode conversion for electromagnetic field modification. A mode converting structure (holographic metamaterial) is formed with a distribution of dielectric constants chosen to convert an electromagnetic radiation pattern from a first mode to a second mode to attain a target electromagnetic radiation pattern that is different from the input electromagnetic radiation pattern. A solution to a holographic equation provides a sufficiently accurate approximation of a distribution of dielectric constants that can be used to form a mode converting device for use with one or more transmission lines, such as waveguides. One or more optimization algorithms can be used to improve the efficiency of the mode conversion.
Abstract:
Described embodiments include a system and method. A system includes a first and second digital imaging devices. Each digital imaging device is configured to capture digital images of a surface traveled by a vehicle. A digital image correlator is configured to (i) correlate a first digital image of the surface captured by a first digital imaging device at a first time and a second digital image of the surface captured by a second digital imaging device at a subsequent second time, and (ii) determine a correlation vector. The first and second imaging devices are separated by a known distance. A kinematics circuit is configured to determine in response to the correlation vector an incremental translation and rotation of the vehicle. The system includes a navigation circuit configured to combine at least two instances of the incremental translation and rotation into data indicative of travel by the vehicle.
Abstract:
Described embodiments include a system, method, and apparatus. The apparatus includes a plasmonic nanoparticle dimer. The dimer includes a first plasmonic nanoparticle having a first magnetic element covered by a first negative-permittivity layer comprising a first plasmonic outer surface. The dimer includes a second plasmonic nanoparticle having a second magnetic element covered by a second negative-permittivity layer comprising a second plasmonic outer surface. The dimer includes a separation control structure configured to establish a dielectric-filled gap between the first plasmonic outer surface and the second plasmonic outer surface. A magnetic attraction between the first magnetic element and the second magnetic element binds the first plasmonic nanoparticle and the second plasmonic nanoparticle together, separated by the dielectric-filled gap established by the separation control structure. The first plasmonic outer surface, the dielectric-filled gap, and the second plasmonic outer surface are configured to cooperatively support one or more mutually coupled plasmonic excitations.
Abstract:
Described embodiments include a system, method, and apparatus. The apparatus includes a plasmonic nanoparticle dimer. The dimer includes a first plasmonic nanoparticle having a first magnetic element covered by a first negative-permittivity layer comprising a first plasmonic outer surface. The dimer includes a second plasmonic nanoparticle having a second magnetic element covered by a second negative-permittivity layer comprising a second plasmonic outer surface. The dimer includes a separation control structure configured to establish a dielectric-filled gap between the first plasmonic outer surface and the second plasmonic outer surface. A magnetic attraction between the first magnetic element and the second magnetic element binds the first plasmonic nanoparticle and the second plasmonic nanoparticle together, separated by the dielectric-filled gap established by the separation control structure. The first plasmonic outer surface, the dielectric-filled gap, and the second plasmonic outer surface are configured to cooperatively support one or more mutually coupled plasmonic excitations.
Abstract:
Described embodiments include a system, method, and apparatus. The apparatus includes a magnetic substrate at least partially covered by a first negative-permittivity layer comprising a first plasmonic outer surface. The apparatus includes a plasmonic nanoparticle having a magnetic element at least partially covered by a second negative-permittivity layer comprising a second plasmonic outer surface. The apparatus includes a dielectric-filled gap between the first plasmonic outer surface and the second outer surface. The first plasmonic outer surface, the dielectric-filled gap, and the second plasmonic outer surface are configured to support one or more mutually coupled plasmonic excitations.
Abstract:
Described embodiments include a system, article of manufacture, a system implemented in a machine, article of manufacture, or composition of matter, and computer-implemented method. A computer-implemented method includes electronically receiving a digital image of person observing a subject person. The method includes determining from the digital image an interest-level in the subject person by the imaged person. The method includes electronically outputting the determined interest-level. In an embodiment, the method includes storing at least one digital image of the monitored person in a non-transitory computer readable storage media.
Abstract:
Described embodiments include a system and method. A computer-implemented method includes receiving electronic data indicative of at least two incremental movements of a vehicle moving over a stochastic surface during a period of time proximate to an event. The electronic data is responsive to a correlation vector between a feature of the stochastic surface in a first digital image captured at a first time by a first digital imaging device carried by the vehicle and the feature of the stochastic surface in a second digital image captured at a subsequent second time by a second digital imaging device carried by the vehicle. The method includes determining in response to the received electronic data a behavior of the vehicle during the period of time proximate to the event. The method includes electronically outputting data indicative of the determined behavior of the vehicle during the period of time proximate to the event.
Abstract:
Embodiments disclosed herein relate to an interactive surgical drape and system including at least one sensor and at least one controller that operates indicating sensing feedback from the at least one sensor to cause display of information on a dynamic display integrated with the interactive surgical drape. The dynamic display assists the surgical team while performing surgery and can operate to improve the efficiency and/or effectiveness of the surgical team.