摘要:
A semiconductor device with inherent capacitances and method for its production. The semiconductor device has an inherent feedback capacitance between a control electrode and a first electrode. In addition, the semiconductor device has an inherent drain-source capacitance between the first electrode and a second electrode. At least one monolithically integrated additional capacitance is connected in parallel to the inherent feedback capacitance or in parallel to the inherent drain-source capacitance. The additional capacitance comprises a first capacitor surface and a second capacitor surface opposite the first capacitor surface. The capacitor surfaces are structured conductive layers of the semiconductor device on a front side of the semiconductor body, between which a dielectric layer is located and which form at least one additional capacitor.
摘要:
A power semiconductor element having a lightly doped drift and buffer layer is disclosed. One embodiment has, underneath and between deep well regions of a first conductivity type, a lightly doped drift and buffer layer of a second conductivity type. The drift and buffer layer has a minimum vertical extension between a drain contact layer on the adjacent surface of a semiconductor substrate and the bottom of the deepest well region which is at least equal to a minimum lateral distance between the deep well regions. The vertical extension can also be determined such that a total amount of dopant per unit area in the drift and buffer layer is larger then a breakdown charge amount at breakdown voltage.
摘要:
A semiconductor device includes a first semiconductor substrate of a first band-gap material and a second semiconductor substrate of a second band-gap material. The second band-gap material has a lower band-gap than the first band-gap material. A heterojunction is formed between the first semiconductor substrate and the second semiconductor substrate substantially in a first plane. The semiconductor device further includes, in a cross-section which is perpendicular to the first plane, a first semiconductor region of a first conductivity type and a second semiconductor region of the first conductivity type both of which extend from the second semiconductor substrate at least partially into the first semiconductor substrate. The first and second semiconductor regions are spaced in the first semiconductor substrate from each other in a direction parallel to the first plane by a first distance which is arranged in an area proximate to the heterojunction and which is larger than a second distance which is arranged in an area distal to the heterojunction.
摘要:
A semiconductor body includes a drift zone of a first conduction type. A body zone of a second conduction type complementary to the first conduction type is located near the surface in the semiconductor body. The semiconductor body includes a near-surface field stop zone of the second complementary conduction type and doped more lightly than the body zone.
摘要:
A semiconductor device, in which a first trench section is produced proceeding from a surface of a semiconductor body into the semiconductor body. A semiconductor layer is produced above the surface and above the first trench section. A further trench section is produced in the semiconductor layer in such a way that the first trench section and the further trench section form a continuous trench structure.
摘要:
A semiconductor component has a drift path (4) in a semiconductor body (5) of a semiconductor chip (6). The semiconductor component has an edge area (7) and a cell area (8), which is surrounded by the edge area (7). A trench structure (9), which surrounds the semiconductor component (6) in the edge area (7), is arranged in the edge area (7) of the semiconductor component (6). At least the trench walls (10) are covered by an insulation material (11). The trench structure (9) which surrounds the semiconductor component (6) has overlapping trench zones (12) with semiconductor material (13) arranged between them.
摘要:
A semiconductor structure has a substrate with a first main surface and a second main surface, the substrate comprising a gate electrode region, a channel region, wherein a conductive channel can be generated, and a gate electrode insulation between the gate electrode region and the channel region. Further, a field electrode region with a curved external surface is provided for increasing a breakdown voltage of the semiconductor structure, wherein the field electrode region has an extension in every direction in parallel to the first main surface, which is lower than a maximum extension in the one direction perpendicular to the second main surface.
摘要:
To attain a comparatively high breakdown voltage at a high avalanche strength and with the physical size simultaneously being as small as possible, the invention proposes constructing a transistor device in a semiconductor material region in which a first source/drain region is used as a source region and in which the source region has a comparatively reduced surface charge or surface charge density.
摘要:
In the case of the semiconductor component (1) according to the invention, the source regions (S), the body regions (B) and, if appropriate, the body contact regions (Bk) are in each case arranged in mesa regions (M) of adjacent trenches (30). In the edge region (R) of the cell array (Z) the insulation (GOX, FOX) of the underlying trench structures (30) by an insulating oxide layer (FOX) is comparatively thick and formed in the form of a field oxide (FOX) or thick oxide (FOX).
摘要:
A semiconductor component has a semiconductor body in which a trench structure is provided. An electrode structure embedded in the trench structure is at least partly insulated from its surroundings by an insulation structure, and is contact-connected in a contact-connecting region via a contact hole that penetrates through an upper region of the insulation structure. The semiconductor component has at least two trenches running next to one another, at least one of said trenches containing a part of the electrode structure. The trenches are oriented so that at least the regions of the insulation structure which are provided in the upper region of the trenches overlap one another in an overlap region. The contact hole is arranged above the at least two trenches in such a way that at least parts of the overlap region and at least one of the electrode structure parts are contact-connected via the contact hole.