摘要:
A method for detecting the transition between different materials in semiconductor structures during alternating etching and covering steps for anisotropic depthwise etching of defined patterns performed using a plasma. Provision is made for ascertaining, by way of an intensity measurement of at least one specific substance contained in the plasma, the beginning of each etching step by the fact that a characteristic threshold is reached, this also being achievable by way of an external synchronization signal which indicates the beginning and end of each etching step; for then, when the threshold value is reached, starting a delay time which is longer than the course of a first concentration maximum; for a second concentration maximum then to be ascertained after the delay time has elapsed; and for the second concentration maxima of the etching steps to be monitored as to whether they exceed or fall below the predefined value, in order to detect a material transition.
摘要:
In a method for manufacturing at least one mechanical-electrical energy conversion system including multiple individual parts, and a mechanical-electrical energy conversion, multiple different individual parts are positioned in an assembly device and joined in joining areas assigned to the individual parts in the assembly device, the individual parts including at least one piezoelectric element, one support structure and one seismic mass.
摘要:
A piezoelectric generator includes a piezoelectric element, a spring element, a mass element, and at least one stop. The piezoelectric element, the spring element, and the mass element form a system which can oscillate. The stop limits the oscillation of the system which can oscillate, at least on one side. The stop is formed from a ductile material or has a coating of a ductile material.
摘要:
An array for placement on the skin of a human or animal patient for the purpose of the transdermal application of pharmaceuticals, toxins or active agents, having microneedles that are situated on a carrier substrate, the microneedles having a preset breaking point in the area of the transition to the carrier substrate.
摘要:
A method for producing a silicon substrate, including the steps of providing a silicon substrate having an essentially planar silicon surface, producing a porous silicon surface having a plurality of pores, in particular having macropores and/or mesopores and/or nanopores, applying a filling material that is to be inserted into the silicon, which has a diameter that is less than a diameter of the pores, inserting the filling material into the pores and removing the excess filling material form the silicon surface, if necessary, and tempering the silicon substrate that is furnished with the filling material that has been filled into the pores, at a temperature between ca. 1000° C. and ca. 1400° C., in order to close the generated pores again and to enclose the filling material.
摘要:
A method for manufacturing separated micromechanical components situated on a silicon substrate includes the following steps of a) providing separation trenches on the substrate via an anisotropic plasma deep etching method, b) irradiating the area of the silicon substrate which forms the base of the separation trenches using laser light, the silicon substrate being converted from a crystalline state into an at least partially amorphous state by the irradiation in this area, and c) inducing mechanical stresses in the substrate. In one specific embodiment, cavities are etched simultaneously with the etching of the separation trenches. The etching depths can be controlled via the RIE lag effect.
摘要:
A device (6) and a method for generating chlorine trifluoride is described, a high-density plasma (105) being generated in the interior of a plasma reactor (100) using plasma generating means (110, 120, 130, 150, 155, 160, 170, 180), and a first gas and a second gas, which react with one another under the influence of the high-density plasma (105) in the plasma reactor (100) under the formation of chlorine trifluoride, being supplied to the plasma reactor (100) via gas supply means (21, 22, 25, 26). In addition, a gas outlet (20) is provided, via which the generated chlorine trifluoride can be removed from the plasma reactor (100). Finally, a system (5) for etching semiconductor substrates (30), silicon wafers in particular, is described including such an upstream device (6), the system (5) having a process chamber (10) which is connected to the plasma reactor (100) via the gas outlet (20), and the semiconductor substrate (30) being situated in the process chamber (10) and exposed to the gaseous chlorine trifluoride generated by the device (6).
摘要:
A method for etching a layer that is to be removed on a substrate, in which a Si1-xGex layer is the layer to be removed, this layer being removed, at least in areas, in gas phase etching with the aid of an etching gas, in particular ClF3. The etching behavior of the Si1-xGex layer can be controlled via the Ge portion in the Si1-xGex layer. The etching method is particularly well-suited for manufacturing self-supporting structures in a micromechanical sensor and for manufacturing such self-supporting structures in a closed hollow space, because the Si1-xGex layer, as a sacrificial layer or filling layer, is etched highly selectively relative to silicon.
摘要:
A microstructure component, in particular an encapsulated micromechanical sensor element, including at least one microstructure patterned out from a silicon layer being encapsulated by a glass element. At least the region of the glass element covering the microstructure is furnished with an electrically conductive coating on its side facing the microstructure.
摘要:
A system and method are described for reducing the current consumption of a microphone component without adversely affecting performance. The system includes a micromechanical microphone capacitor, an acoustically inactive compensation capacitor, an arrangement for applying a high-frequency sampling signal to the microphone capacitor and for applying the inverted sampling signal to the compensation capacitor, an integrating operational amplifier which integrates the sum of the current flow through the microphone capacitor and the current flow through the compensation capacitor as a charge amplifier, a demodulator, which is synchronized with the sampling signal, for the output signal of the integrating operational amplifier, and a low-pass filter which uses the output signal of the demodulator to obtain a microphone signal that corresponds to the changes in capacitance of the microphone capacitor. The sampling signal is composed of a periodic sequence of sampling pulses and pause times. In addition, at least one first switching element is provided which reduces the current flow through the integrating operational amplifier during the pause times. The low-pass filter has a “sample-and-hold” characteristic so that during the pause times the low-pass filter in each case stores the output signal of the integrating operational amplifier averaged over the preceding sampling operation.