Abstract:
Embodiments of the present disclosure describe apparatuses and methods for mobility management entity (MME) overload or underload mitigation using an MME virtual network function (VNF). Various embodiments may include one or more processors to execute instructions to process a notification from a virtual network function manager (VNFM) to determine instantiation of a MME as a VNF, add the MME to an MME pool, and assign a value to an application parameter of the MME VNF. Other embodiments may be described and/or claimed.
Abstract:
Embodiments use the principles of self-organizing networks to allocate resources to allow spectrum owners to share spectrum with wireless carriers according to defined license conditions. A spectrum licensee holds the licensing conditions of the spectrum licensed by the spectrum owners. This licensed spectrum is referred to as secondary spectrum. A self-organizing network server requests access to secondary spectrum. The spectrum licensee grants access to the secondary spectrum along with the licensing conditions for access. The self-organizing network server monitors the conditions associated with the license and/or delegates the responsibility for monitoring conditions associated with the license to others. When the license conditions are met, enhanced Node B systems may begin using the secondary spectrum according to the license conditions. When the license conditions are no longer met, enhanced Node B systems discontinue use of the secondary spectrum.
Abstract:
Embodiments described herein relate generally to a communication between an element manager and a wireless local area network (WLAN) access point (AP). The WLAN AP may be configured with one or more counters. The one or more counters may measure events, such as data transmission and/or reception at the WLAN AP or a carrier sense multiple access with collision avoidance (CSMA/CA) procedure by the WLAN AP. The element manager may be configured to read one or more of these counters and compute one or more values based on the values read from the one or more counters. The element manager may be configured to communicate the one or more computed values to a network manager. Other embodiments may be described and/or claimed.
Abstract:
A technology for a user equipment (UE) that is operable to connect to a third generation partnership project (3GPP) long term evolution (LTE) cell in a cellular network. Logged minimization of drive test (MDT) measurements can be recorded at the UE at a selected rate when the UE is in a radio resource control (RRC) idle mode in a first LTE cell in a cellular network. A change in a UE state of the RRC idle mode can be identified. The Logged MDT measurements can stop being recorded at the UE when the UE state changes from a camped normally UE state to another UE state of the RRC idle mode. The Logged MDT measurements can resume being recorded when the UE state changes to the camped normally UE state of the RRC idle mode.
Abstract:
Embodiments described herein relate generally to a communication between an element manager and a wireless local area network (WLAN) access point (AP). The WLAN AP may be configured with one or more counters. The one or more counters may measure events, such as data transmission and/or reception at the WLAN AP or statistics based on association of user equipment (UE) with the WLAN AP. The element manager may be configured to read one or more of these counters and compute one or more values based on the values read from the one or more counters. The element manager may be configured to communicate the one or more computed values to a network manager. Other embodiments may be described and/or claimed.
Abstract:
A technology is disclosed that is operable to determine user equipment (UE) distribution information for a communications network. A cell of an enhanced Node B (eNode B) can be mapped into a plurality of UE distribution bins. A UE in the cell of the eNode B can be associated with a UE distribution bin based on a location of the UE in the cell that is determined using a time advance (TADV) value and an angle of arrival (AOA) measurement of an UL transmission from the UE to the eNode B. A UE distribution of one or more UEs in the cell can be calculated based on a number of UEs in each of the plurality of UE distribution bins.
Abstract:
Embodiments described herein relate generally to a communication between an element manager and a wireless local area network (WLAN) access point (AP). The WLAN AP may be configured with one or more counters. The one or more counters may measure events, such as data transmission and/or reception at the WLAN AP or a carrier sense multiple access with collision avoidance (CSMA/CA) procedure by the WLAN AP. The element manager may be configured to read one or more of these counters and compute one or more values based on the values read from the one or more counters. The element manager may be configured to communicate the one or more computed values to a network manager. Other embodiments may be described and/or claimed.